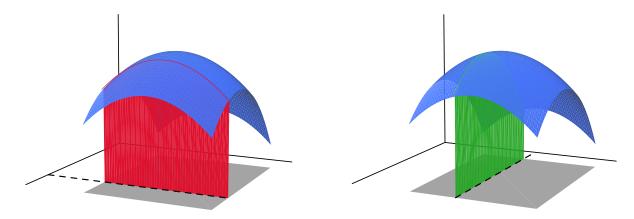
Evaluating double integrals via iterated integration

Let's start with an example that we can compute using geometric methods.

Example. Consider


$$\iint\limits_R \frac{y}{3} \, dA$$

where $R = \{(x, y) \mid 0 \le x \le 2, \ 0 \le y \le 3\}.$

We can generalize this technique to obtain a method for calculating double integrals. Consider a positive function f(x, y) and a rectangle

$$R = \{(x, y) \mid a \le x \le b, \ c \le y \le d\}$$

in the xy-plane. We can calculate the volume of the solid determined by R and f(x, y) using x-slices or y-slices.

The basic idea is to compute the volume of the solid in question by integrating the areas of the slices. For example, suppose that we slice up the solid using y-slices. Let A(y) denote the area of a y-slice. Then

$$\iint\limits_R f(x,y) \, dA = \int_c^d A(y) \, dy.$$

Moreover, for any given y, the area of the y-slice is

$$A(y) = \int_a^b f(x, y) \, dx.$$

We obtain an *iterated integral* that yields the volume of the solid. That is,

$$\iint\limits_{R} f(x,y) dA = \int_{c}^{d} \left[\int_{a}^{b} f(x,y) dx \right] dy.$$

We compute the inside integral treating y as a constant ("partial integration"), and then we compute the outside integral which only depends on y.

It is also possible to use x-slices rather than y-slices.

Theorem. (Fubini's Theorem) If f(x,y) is continuous on the rectangle

$$R = \{(x, y) \mid a \le x \le b, \ c \le y \le d\},\$$

then

$$\iint\limits_R f(x,y) dA = \int_a^b \int_c^d f(x,y) dy dx$$
$$= \int_c^d \int_a^b f(x,y) dx dy.$$

Let's return to the example discussed earlier.

Example. Consider

$$\iint\limits_R \frac{y}{3} \, dA$$

where
$$R = \{(x, y) \mid 0 \le x \le 2, \ 0 \le y \le 3\}.$$

The calculation that we did involved x-slices.

We can also calculate the integral using y-slices.

Example. Consider the double integral

$$\iint\limits_R x \cos(xy) \, dA$$

where $R = \{(x, y) \mid 0 \le x \le \pi/4, \ 0 \le y \le 2\}.$

Example. Calculate the average value of the function

$$f(x,y) = xe^{xy}$$

over the rectangle $R = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le 2\}.$