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Evaluating double integrals via iterated integration

Let’s start with an example that we can compute using geometric methods.

[y

where R = {(z,y)|0< 2 <2, 0 <y <3}

Example. Consider

We can generalize this technique to obtain a method for calculating double integrals. Con-
sider a positive function f(z,y) and a rectangle

R={(z,9)|a<s<b c<y<d}

in the zy-plane. We can calculate the volume of the solid determined by R and f(z,y) using
x-slices or y-slices.
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The basic idea is to compute the volume of the solid in question by integrating the areas of
the slices. For example, suppose that we slice up the solid using y-slices. Let A(y) denote
the area of a y-slice. Then
d
J[ fay = [ Aw)dy.
C
R

Moreover, for any given y, the area of the y-slice is

xaw=éﬁume

We obtain an iterated integral that yields the volume of the solid. That is,

é/f(x’y)dfb/cd Vabf(:v,y)dx] dy.

We compute the inside integral treating y as a constant (“partial integration”), and then we
compute the outside integral which only depends on y.

It is also possible to use z-slices rather than y-slices.
Theorem. (Fubini’s Theorem) If f(z,y) is continuous on the rectangle

R={(z,y)la<z<b, c<y<d}

then

[ s@war=[ [ i)y
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Let’s return to the example discussed earlier.

[y

where R = {(z,y) |0 <z <2, 0 <y <3}

Example. Consider

The calculation that we did involved z-slices.

We can also calculate the integral using y-slices.
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Example. Consider the double integral

// x cos(zy) dA

where R ={(z,y) |0<z <7/4, 0 <y <2}
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Example. Calculate the average value of the function

flz,y) = ze™

over the rectangle R = {(z,y) |0<z2 <1,0 <y <2}



