More on partial derivatives

Last class we discussed the partial derivative of a function f(x, y) with respect to x. We discussed both the definition and a shorthand way to compute it.

Let's try a more complicated example.

Example. Consider $g(x,y) = y \ln(xy) + y$.

The partial derivative with respect to y is defined in a similar fashion.

Definition. The partial derivative of f(x, y) in the y-direction at the point (x_0, y_0) is defined by

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

We keep x constant and vary y as we take the limit.

Example. Consider $g(x,y) = y \ln(xy) + y$ again and calculate $\partial g/\partial y$ this time.

Example. Consider the function $f(x,y) = \sqrt{9-x^2-y^2}$ at the point (1,2). In what direction, the x-direction or the y-direction, does f(x,y) decrease most rapidly?

Geometric interpretation of partial derivatives

Now let's discuss the geometric significance of the two numbers that we obtain from the partials of $f(x, y) = 9 - x^2 - y^2$ at (1, 2). For example, we can use these numbers to calculate the equation of the tangent plane to the graph of z = f(x, y) at the point (1, 2, 4).

Definition. Suppose that the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ exist at the point (a, b). Then let

$$\mathbf{T}_x = \mathbf{i} + \left(\frac{\partial f}{\partial x}(a, b)\right) \mathbf{k}$$
 and $\mathbf{T}_y = \mathbf{j} + \left(\frac{\partial f}{\partial y}(a, b)\right) \mathbf{k}$.

The normal vector for f(x, y) at the point (a, b) is $\mathbf{N} = \mathbf{T}_y \times \mathbf{T}_x$.

The equation for the tangent plane can be written as

$$z - c = \left(\frac{\partial f}{\partial x}(a, b)\right)(x - a) + \left(\frac{\partial f}{\partial y}(a, b)\right)(y - b),$$

where c = f(a, b).

Linear approximation

The equation for the tangent plane can also be thought of as a linear approximation to f(x, y) for (x, y) near (a, b).

We can use the the formula for the tangent plane to define a "linear" function

$$L(x,y) = f(a,b) + \left(\frac{\partial f}{\partial x}(a,b)\right)(x-a) + \left(\frac{\partial f}{\partial y}(a,b)\right)(y-b).$$

The graph of this function is the tangent plane for f(x, y) at the point (a, b), and it provides a linear approximation to f(x, y) near (a, b).

Example. The linear approximation of the function $f(x,y) = 9 - x^2 - y^2$ near the point (1,2) is

$$f(x,y) \approx L(x,y) = 4 - 2(x-1) - 4(y-2).$$

Another way to write this approximation is as

$$f(1 + \Delta x, 2 + \Delta y) \approx 4 - 2\Delta x - 4\Delta y$$

where $\Delta x = x - 1$ and $\Delta y = y - 2$.

Example. Calculate the linear approximation of the function $g(x, y) = y \ln(xy) + y$ near the point (1/2, 2).