Surfaces

The precise mathematical definition of a surface in space is technical and complicated. For our purposes, the following simpler statement will suffice.

Definition. A *surface* in space is a “two-dimensional” collection of points in space.

The meaning of the term “two-dimensional” is best illustrated by a few examples.

Examples.

1. Any plane \(ax + by + cz = d \) is a surface.

2. The boundary of any solid region is a surface, e.g., the collection of points satisfying the inequality

 \[x^2 + y^2 + z^2 \leq 1 \]

 has the spherical surface

 \[x^2 + y^2 + z^2 = 1 \]

 as its boundary.
3. Take the equation of any curve in the xy-plane, e.g., the ellipse
\[2x^2 + y^2 = 1, \]
and plot all points (x, y, z) such that
\[2x^2 + y^2 = 1. \]
The result is a surface that is perpendicular to the xy-plane. This type of surface is
called a (generalized) cylinder.

4. Surfaces of Revolution. Start with the graph of a function of one variable $z = f(y)$ in
the yz-plane. Then we can revolve that curve around the y-axis in space. We get a
surface of revolution.
5. Graph of a function of two variables. Given a “nice” function $z = f(x, y)$, then the set of all points (x, y, z) such that $z = f(x, y)$ is a surface.

Example. Consider the function $f(x, y) = x^2 + y^2$.
6. The Mobius Band. Take a long and relatively thin strip of paper and attach the two short ends by a half twist.

7. Surfaces from torus knots: This figure was produced using computer code posted on the web site of Professor Mark McClure at the University of North Carolina in Asheville.

8. Carin Siegerman surface: In class I will show a figure that can be interpreted as a surface. It was produced by Carin Siegerman, a former MA225 student of mine, as part of her work on her PhD dissertation in biomedical engineering.

9. Quadric Surfaces: surfaces of the form

\[Ax^2 + By^2 + Cz^2 = D \]

where \(A, B, \) and \(C \) are nonzero.