While they are on $C_{\mathbf{Z}}$, $\Gamma_{\mathbf{1}}$ and $\Gamma_{\mathbf{Z}}$ are walking a tight-rope. The unstable periodic Γ behave in this way just before each of their shoot-throughs, which are many when the period of Γ is long, and they slice or pull differently each time.

I have now to report a very surprising development, an electronic calculation discovery by A. Warren, under the supervision of H.P.F. Swinnerton-Dyer. His k is 5, which is a good bet for being "large." For a certain \underline{b} he finds two stable periods of orders 11 and 25, completely breaking the $2n \pm 1$ rule. Photographs of these are given in Fig. 3.

We can interpret the photographs in terms of the "k large" behavior we have been describing, at least up to a point. We must, of course, regard \underline{b} as being in a transitional interval, and Γ_{11} as the stable Γ we said above might be expected. (Γ_{11} does not make any dips, but this is normal in part of the range of \underline{b} .)

The photograph of Γ_{25} reveals that it follows part of a C_2 at A, B, and C (pulling at B and invertedly slicing at A and C). The surprise, of course, is that, its three "exponentially" dangerous walks notwithstanding, it succeeds in being stable. After this there seems no reason why, for a single \underline{b} and different initial conditions, slices and pulls could not happen in a variety of ways, in which case there could be 3 or more different stable periods.

Stable trajectory - sub-harmonic order [1]

Stable trajectory - sub-harmonic order 25