General second-order autonomous equations

In general, a second-order autonomous equation has

- one independent variable and
- one dependent variable.

It has the form $\frac{d^2y}{dt^2} = f\left(y, \frac{dy}{dt}\right)$.

Example. Simple mass-spring system

Hooke's Law: The restoring force of the spring is proportional to the displacement from its rest position.

Using Newton's law F = ma, we get

Let's consider the special case where k=m. We get $\frac{d^2y}{dt^2}=-y$, and we can guess some solutions to this equation:

General 2D first-order autonomous systems

In general, a 2D first-order autonomous system of ordinary differential equations has

- one independent variable and
- two dependent variables.
- The independent variable does not appear on the right-hand sides of the differential equations.

Example. Recall the predator-prey systems we discussed briefly at the start of the semester

$$\begin{split} \frac{dR}{dt} &= aR - bRF \\ \frac{dF}{dt} &= -cF + dRF. \end{split}$$

Let's go through some terminology:

- initial condition:
- solution to an initial-value problem:

The solution shown above corresponds to the initial condition $(R_0, F_0) = (1, 0.5)$ with parameter values a = 2, b = 1.2, c = 1, and d = 0.9. See the web site for the entire animation and for a related 3D animation. DETools also has a tool called PredatorPrey.

- component graphs:
- phase plane:
- solution curve in the phase plane:
- equilibrium solutions:

(Additional blank space at the top of the next page.)

• phase portrait:

One skill that you will learn is how to make a rough sketch of the component graphs from the solution curve. There is a tool on your CD called DESketchPad which will help you practice.