Laplace transforms and second-order linear equations

So far we have only applied the Laplace transform to first-order equations. Now we consider second-order equations.

Recall the rule for Laplace transforms of derivatives: \(\mathcal{L}\left[\frac{dy}{dt}\right] = s\mathcal{L}[y] - y(0) \). What does this rule say about \(\mathcal{L}\left[\frac{d^2y}{dt^2}\right] \)?

Now that we have this rule, we also need to add to our table of Laplace transforms. Since sine and cosine often appear as parts of the solutions to second-order equations, let’s determine their Laplace transforms.

There are a number of ways to compute these transforms—using integration by parts, using Euler’s formula, and even using the fact that sine and cosine are solutions to certain very special second-order equations. *Mathematica* tells us that

\[
\mathcal{L}[e^{i\omega t}] = \frac{1}{s - i\omega}.
\]

Let’s use this fact to determine \(\mathcal{L}[\sin \omega t] \) and \(\mathcal{L}[\cos \omega t] \).
Now that we know the transforms of sine and cosine, let’s see how we use them.

Example. Compute

$$
\mathcal{L}^{-1} \left[\frac{2s + 1}{s^2 + 9} \right].
$$
Now for a little practice with the third rule for transforms:

Example. Compute

$$\mathcal{L}^{-1}\left[\frac{8e^{-10s}}{(s^2 + 9)(s^2 + 1)} \right].$$
Now let’s use what we have learned to solve the initial-value problem

\[
\frac{d^2y}{dt^2} + 9y = 8u_{10}(t)\sin(t - 10), \quad y(0) = 2, \quad y'(0) = 1.
\]

Here is the graph of the forcing function \(8u_{10}(t)\sin(t - 10)\):
Here are the graphs of the two functions that combine to give us the desired solution.

Here is the graph of the solution

The second-order equation that we just considered is undamped. In order to consider the full range of second-order equations, we need one more property of the transform.

Shifting the s-axis. Let \(Y(s) \) denote the Laplace transform \(\mathcal{L}[y(t)] \). Then

\[
\mathcal{L}[e^{at} y(t)] =
\]
Example 1. Calculate $\mathcal{L}[e^{-2t}\cos 3t]$.

Example 2. Calculate $\mathcal{L}^{-1}\left[\frac{2s + 7}{s^2 + 4s + 7}\right]$.