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A little review and fixing an omission

Consider the system
dx

dt
= f(x, y)

dy

dt
= g(x, y)

with independent variable t and dependent variables x and y. We use the right-hand side of
this system to form a vector field

F

(
x
y

)
=

 f(x, y)

g(x, y)


in the xy-plane. We also use x(t) and y(t) to form a vector-valued function

Y(t) =

 x(t)

y(t)

 .
Then the (scalar) system of differential equations can be rewritten as one vector differential
equation

dY

dt
= F(Y).

Example 1 revisited. Let’s consider the simple mass-spring system with k = m, but this
time we’ll write it using the variables x and y to be consistent with the HPGSystemSolver

notation. We have
d2x

dt2
+ x = 0.

The equivalent first-order system is
dx

dt
= y

dy

dt
= −x.

and, the vector field is

F

(
x
y

)
=

(
y
−x

)
.
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We guessed some solutions to the second-order equation before spring break. One is
x(t) = cos t. The corresponding vector function is

Y(t) =

(
cos t
− sin t

)
.

Then
dY

dt
=

(
− sin t
− cos t

)
and F (Y(t)) =

(
− sin t
− cos t

)
.

Damped Harmonic Oscillator

Let’s return to our mass-spring system and add a term that models damping.

Assumption: The damping force is proportional to the speed of the mass and it acts as a
restoring force.

This second-order equation and its equivalent system appear in many applications. In
DETools, you will find it in MassSpring and RLCCircuits, and it has also been used to
study biological processes such as the blood glucose regulatory system in humans.
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There is a guessing technique for the damped harmonic oscillator

m
d2y

dt2
+ b

dy

dt
+ ky = 0.

3



MA 226 March 17, 2015

Example. Consider the harmonic oscillator

d2y

dt2
+ 3

dy

dt
+ 2y = 0.

Its characteristic equation is
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Analytic Techniques:

There are few analytic techniques that work for both linear and nonlinear systems.

1. You can always check to see if a given function is a solution (no wrong answers).

2. General solution of a partially-decoupled system

Example. Consider the system

dx

dt
= 2y − x

dy

dt
= y.

We can calculate the general solution using methods we learned for first-order equa-
tions:
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Euler’s method for a system

We can use the vector field for a system to produce numerical approximations for the
solutions.

Example. Consider the initial-value problem

dx

dt
= −y

dy

dt
= x− y

(x0, y0) = (2, 0).

The EulersMethodForSystems tool demonstrates the method. We pick a large step size
∆t = 0.5 so that we can see the method in action.

k xk yk mk nk
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Here’s the general formula for Euler’s method written in vector notation:

Let Y0 be an initial condition and ∆t be a step size. Consider the initial-value problem

dY

dt
= F(Y), Y(t0) = Y0.

Then tk+1 = tk + ∆t and Yk+1 = Yk + (∆t)F(Yk). There are spreadsheets on the course
web site that implement the method.

Existence and Uniqueness Theory for Systems

There is an existence and uniqueness theorem for systems just like the theorem for equa-
tions.

Existence and Uniqueness Theorem. Let

dY

dt
= F(t,Y)

be a system of differential equations. Suppose that t0 is an initial time and Y0 is an initial
value. Suppose also that the function F is continuously differentiable. Then there is an ε > 0
and a function Y(t) defined for t0 − ε < t < t0 + ε such that

dY

dt
= F(t,Y(t)) and Y(t0) = Y0.

In other words, Y(t) satisfies the initial-value problem. Moreover, for t in this interval, this
solution is unique.

There is an important consequence of the Uniqueness Theorem for autonomous systems:
Consider the metaphor of the parking lot.

7


