Existence and Uniqueness Theory for Systems
There is an existence and uniqueness theorem for systems just like the theorem for equations.

Existence and Uniqueness Theorem. Let

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{F}(t, \mathbf{Y})
$$

be a system of differential equations. Suppose that t_{0} is an initial time and \mathbf{Y}_{0} is an initial value. Suppose also that the function \mathbf{F} is continuously differentiable. Then there is an $\epsilon>0$ and a function $\mathbf{Y}(t)$ defined for $t_{0}-\epsilon<t<t_{0}+\epsilon$ such that

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{F}(t, \mathbf{Y}(t)) \quad \text { and } \quad \mathbf{Y}\left(t_{0}\right)=\mathbf{Y}_{0}
$$

In other words, $\mathbf{Y}(t)$ satisfies the initial-value problem. Moreover, for t in this interval, this solution is unique.

There is an important consequence of the Uniqueness Theorem for autonomous systems: Consider the metaphor of the parking lot.

Given the autonomous system

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{F}(\mathbf{Y})
$$

Let \mathbf{Y}_{0} be an initial condition such that $\mathbf{Y}_{1}(t)$ is a solution that satisfies $\mathbf{Y}\left(t_{1}\right)=\mathbf{Y}_{0}$ and $\mathbf{Y}_{2}(t)$ is another solution that satisfies $\mathbf{Y}\left(t_{2}\right)=\mathbf{Y}_{0}$. Then

$$
\mathbf{Y}_{2}(t)=\mathbf{Y}_{1}\left(t-\left(t_{2}-t_{1}\right)\right)
$$

Example. Consider the second-order equation

$$
\frac{d^{2} x}{d t^{2}}+x=0
$$

which is equivalent to the system

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=-x
\end{aligned}
$$

Note that

$$
\mathbf{Y}_{1}(t)=\binom{\cos t}{-\sin t} \quad \text { and } \quad \mathbf{Y}_{2}(t)=\binom{\sin t}{\cos t}
$$

are both solutions to the system. How are $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ related?

Here is an informal restatement of this consequence of uniqueness:
For an autonomous system, if two solution curves in the phase plane touch, then they are identical.

Linear systems

Linear systems and second-order linear equations are the most important systems we study in this course.

What is a linear system with two dependent variables?

What is a second-order, homogeneous, linear equation?

Linear systems written in vector notation suggest the use of matrix multiplication:

Recall two examples that we have already discussed.
Example 1. We have already calculated the general solution to the partially decoupled system

$$
\begin{aligned}
& \frac{d x}{d t}=2 y-x \\
& \frac{d y}{d t}=y
\end{aligned}
$$

It is

$$
\begin{aligned}
& x(t)=y_{0} e^{t}+\left(x_{0}-y_{0}\right) e^{-t} \\
& y(t)=y_{0} e^{t}
\end{aligned}
$$

or in vector form

$$
\mathbf{Y}(t)=e^{t}\binom{y_{0}}{y_{0}}+e^{-t}\binom{x_{0}-y_{0}}{0}
$$

Example 2. For the damped harmonic oscillator

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0
$$

and its equivalent system

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=-2 y-3 v
\end{aligned}
$$

we used a guessing technique to find two (scalar) solutions $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=e^{-t}$. In vector form, these solutions are written as

$$
\mathbf{Y}_{1}(t)=\binom{e^{-2 t}}{-2 e^{-2 t}}=e^{-2 t}\binom{1}{-2} \quad \text { and } \quad \mathbf{Y}_{2}(t)=\binom{e^{-t}}{-e^{-t}}=e^{-t}\binom{1}{-1}
$$

Given a linear system $d \mathbf{Y} / d t=\mathbf{A Y}$, how do we calculate the vector in the vector field at any given point \mathbf{Y}_{0} ?

How do we calculate the equilibrium points of the linear system $\frac{d \mathbf{Y}}{d t}=\mathbf{A Y}$?

Example. Let $\mathbf{A}_{1}=\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)$.

Example. Let $\mathbf{A}_{2}=\left(\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right)$.

Theorem. The origin is always an equilibrium point of a linear system. It is the only equilibrium point if and only if $\operatorname{det} \mathbf{A} \neq 0$.

MA 226	March 19, 2015

The Linearity Principle
Let's return to Example 1. For practice, we'll use vector notation this time:

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right) \mathbf{Y}
$$

Also consider three different initial conditions

$$
\mathbf{Y}_{1}=\binom{1}{0} \quad \mathbf{Y}_{2}=\binom{1}{1} \quad \mathbf{Y}_{3}=\binom{2}{1}
$$

They correspond to the three solutions

$$
\mathbf{Y}_{1}(t)=e^{-t}\binom{1}{0}, \quad \mathbf{Y}_{2}(t)=e^{t}\binom{1}{1}, \quad \text { and } \quad \mathbf{Y}_{3}(t)=\binom{e^{t}+e^{-t}}{e^{t}}
$$

Let's see what happens when we graph these solutions.

How are these three solutions related?

Linearity Principle Suppose

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{A} \mathbf{Y}
$$

is a linear system of differential equations.

1. If $\mathbf{Y}(t)$ is a solution of this system and k is any constant, then $k \mathbf{Y}(t)$ is also a solution.
2. If $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ are two solutions of this system, then $\mathbf{Y}_{1}(t)+\mathbf{Y}_{2}(t)$ is also a solution.

This principle gives us a more general way to find solutions of linear systems. To see how this approach works, let's consider Example 1 again along with the two solutions $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$.

Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right) \mathbf{Y}
$$

and the two solutions

$$
\mathbf{Y}_{1}(t)=\binom{e^{-t}}{0} \quad \text { and } \quad \mathbf{Y}_{2}(t)=\binom{e^{t}}{e^{t}}
$$

Any linear combination of $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ is also a solution to the system.

