MA 226	March 21, 2015

One more comment on equilibrium points
Theorem. The origin is always an equilibrium point of a linear system. It is the only equilibrium point if and only if $\operatorname{det} \mathbf{A} \neq 0$.

The Linearity Principle
Let's return to Example 1 from last class. For practice, we'll use vector notation this time:

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right) \mathbf{Y}
$$

Also consider three different initial conditions

$$
\mathbf{Y}_{1}=\binom{1}{0} \quad \mathbf{Y}_{2}=\binom{1}{1} \quad \mathbf{Y}_{3}=\binom{2}{1}
$$

They correspond to the three solutions

$$
\mathbf{Y}_{1}(t)=e^{-t}\binom{1}{0}, \quad \mathbf{Y}_{2}(t)=e^{t}\binom{1}{1}, \quad \text { and } \quad \mathbf{Y}_{3}(t)=\binom{e^{t}+e^{-t}}{e^{t}}
$$

Let's see what happens when we graph these solutions.

How are these three solutions related?

MA 226	March 21, 2015

Linearity Principle Suppose

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{A} \mathbf{Y}
$$

is a linear system of differential equations.

1. If $\mathbf{Y}(t)$ is a solution of this system and k is any constant, then $k \mathbf{Y}(t)$ is also a solution.
2. If $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ are two solutions of this system, then $\mathbf{Y}_{1}(t)+\mathbf{Y}_{2}(t)$ is also a solution.

This principle gives us a more general way to find solutions of linear systems. To see how this approach works, let's consider Example 1 again along with the two solutions $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$.

Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right) \mathbf{Y}
$$

and the two solutions

$$
\mathbf{Y}_{1}(t)=\binom{e^{-t}}{0} \quad \text { and } \quad \mathbf{Y}_{2}(t)=\binom{e^{t}}{e^{t}}
$$

Any linear combination of $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ is also a solution to the system.

Example. Solve

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right) \mathbf{Y}, \quad \mathbf{Y}(0)=\binom{-1}{-2}
$$

For an arbitrary linear system $d \mathbf{Y} / d t=\mathbf{A Y}$, how many solutions do we need to solve every initial-value problem?

Questions: How do we find two linearly independent solutions? Is there something special about the two solutions $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$ in the example?

Straight-line solutions
For a general linear system of the form $d \mathbf{Y} / d t=\mathbf{A Y}$, what geometric property of the vector field guarantees the existence of these "straight-line" solutions?

"Straight-line" Solutions. Suppose that

$$
\mathbf{A} \mathbf{Y}_{0}=\lambda \mathbf{Y}_{0}
$$

for some nonzero vector \mathbf{Y}_{0} and some scalar λ. Then the function $\mathbf{Y}(t)=e^{\lambda t} \mathbf{Y}_{0}$ is a solution to the linear differential equation $d \mathbf{Y} / d t=\mathbf{A Y}$.

We want nonzero initial conditions \mathbf{Y}_{0} (vectors) so that

$$
\mathbf{A} \mathbf{Y}_{0}=\lambda \mathbf{Y}_{0}
$$

for some scalar λ.
Terminology: The scalar λ is called an eigenvalue of the matrix \mathbf{A} and the vector \mathbf{Y}_{0} is called an eigenvector associated to the eigenvalue λ.

Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \mathbf{Y}
$$

First let's see what MatrixFields tells us about the eigenvalues and eigenvectors of the matrix A.

Aside from the theory of algebraic linear equations
For what matrices \mathbf{B} does the equation $\mathbf{B Y}=\mathbf{0}$ have nontrivial solutions?
Singular Matrices. The matrix equation $\mathbf{B Y}=\mathbf{0}$ has nontrivial solutions \mathbf{Y} if and only if $\operatorname{det} \mathbf{B}=0$.

Notes:

1. Most matrices are nonsingular (not singular).
2. We encountered a singular matrix last class when we studied the linear system that had a line of equilibrium points.

Finding eigenvalues and eigenvectors:

Example. Find the general solution to

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \mathbf{Y} .
$$

