Straight-line solutions and eigenstuff
Last class we learned that we need two linearly independent solutions of a 2D-linear system to obtain the general solution. Moreover, we learned that initial conditions \mathbf{Y}_{0} that satisfy the equation

$$
\mathbf{A} \mathbf{Y}_{0}=\lambda \mathbf{Y}_{0}
$$

yield especially nice solutions. These solutions

$$
\mathbf{Y}(t)=e^{\lambda t} \mathbf{Y}_{0}
$$

are called straight-line solutions.
We want nonzero initial conditions \mathbf{Y}_{0} (vectors) so that

$$
\mathbf{A} \mathbf{Y}_{0}=\lambda \mathbf{Y}_{0}
$$

for some scalar λ.
Terminology: The scalar λ is called an eigenvalue of the matrix \mathbf{A} and the vector \mathbf{Y}_{0} is called an eigenvector associated to the eigenvalue λ.

Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{A Y} \quad \text { where } \quad \mathbf{A}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right)
$$

Note that

$$
\begin{aligned}
& \mathbf{A}\binom{2}{1}=\binom{4}{2}=2\binom{2}{1} \\
& \mathbf{A}\binom{4}{2}=\binom{8}{4}=2\binom{4}{2} \\
& \mathbf{A}\binom{1}{1}=\binom{1}{0} \neq \lambda\binom{1}{1}
\end{aligned}
$$

for any scalar λ.

How do we find these special directions?

Aside from the theory of algebraic linear equations
For what matrices \mathbf{B} does the equation $\mathbf{B Y}=\mathbf{0}$ have nontrivial solutions?
Singular Matrices. The matrix equation $\mathbf{B Y}=\mathbf{0}$ has nontrivial solutions \mathbf{Y} if and only if $\operatorname{det} \mathbf{B}=0$.

Notes:

1. Most matrices are nonsingular (not singular).
2. We encountered a singular matrix when we studied the linear system that had a line of equilibrium points.

Finding eigenvalues and eigenvectors:

Example. Find the general solution to

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \mathbf{Y} .
$$

Here's the phase portrait for this system:

Facts about eigenvalues and eigenvectors: Given a 2×2 matrix \mathbf{A},

1. The characteristic equation can have two real roots, one real root of multiplicity two, or two complex conjugate roots.
2. Given an eigenvector \mathbf{Y}_{0} associated to an eigenvalue λ, then any nonzero scalar multiple \mathbf{Y}_{0} is also an eigenvector associated to λ.
3. Eigenvectors associated to distinct eigenvalues are linearly independent.

Summary of Case of Two Distinct Real Eigenvalues
Suppose \mathbf{A} is a matrix with two eigenvalues λ_{1} and λ_{2}. To be consistent, we will assume that $\lambda_{1}<\lambda_{2}$, that \mathbf{V}_{1} is an eigenvector associated to λ_{1}, and that \mathbf{V}_{2} is an eigenvector associated to λ_{2}. The general solution of

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{A} \mathbf{Y}
$$

is $\mathbf{Y}(t)=k_{1} e^{\lambda_{1} t} \mathbf{V}_{1}+k_{2} e^{\lambda_{2} t} \mathbf{V}_{2}$.
Case 1: $\lambda_{1}<\lambda_{2}<0$.
MA $226 \quad$ March 24, 2015

Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right) \mathbf{Y}
$$

Sketching component graphs
Once we understand the phase portrait, we should also be able to sketch the component graphs without HPGSystemSolver.

For example, once again consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right) \mathbf{Y}
$$

Let's sketch the $x(t)$ - and $y(t)$-graphs that correspond to the initial conditions $(-3,2)$ and $(3,2)$.

