MA 226

Straight-line solutions and eigenstuff

Last class we learned that we need two linearly independent solutions of a 2D-linear system to obtain the general solution. Moreover, we learned that initial conditions \mathbf{Y}_0 that satisfy the equation

$$\mathbf{A}\mathbf{Y}_0 = \lambda \mathbf{Y}_0$$

yield especially nice solutions. These solutions

$$\mathbf{Y}(t) = e^{\lambda t} \mathbf{Y}_0$$

are called *straight-line* solutions.

We want nonzero initial conditions \mathbf{Y}_0 (vectors) so that

$$\mathbf{A}\mathbf{Y}_0 = \lambda \mathbf{Y}_0$$

for some scalar λ .

Terminology: The scalar λ is called an *eigenvalue* of the matrix **A** and the vector \mathbf{Y}_0 is called an *eigenvector* associated to the eigenvalue λ .

Example. Consider

$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$
 where $\mathbf{A} = \begin{pmatrix} 3 & -2\\ 2 & -2 \end{pmatrix}$.

Note that

$$\mathbf{A}\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}4\\2\end{pmatrix} = 2\begin{pmatrix}2\\1\end{pmatrix}$$
$$\mathbf{A}\begin{pmatrix}4\\2\end{pmatrix} = \begin{pmatrix}8\\4\end{pmatrix} = 2\begin{pmatrix}4\\2\end{pmatrix}$$
$$\mathbf{A}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} \neq \lambda\begin{pmatrix}1\\1\end{pmatrix}$$

for any scalar λ .

How do we find these special directions?

Aside from the theory of algebraic linear equations

For what matrices **B** does the equation $\mathbf{BY} = \mathbf{0}$ have nontrivial solutions?

Singular Matrices. The matrix equation $\mathbf{BY} = \mathbf{0}$ has nontrivial solutions \mathbf{Y} if and only if det $\mathbf{B} = 0$.

Notes:

- 1. Most matrices are nonsingular (not singular).
- 2. We encountered a singular matrix when we studied the linear system that had a line of equilibrium points.

Finding eigenvalues and eigenvectors:

 $\ensuremath{\mathbf{Example.}}$ Find the general solution to

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 3 & -2\\ 2 & -2 \end{pmatrix} \mathbf{Y}.$$

Here's the phase portrait for this system:

Facts about eigenvalues and eigenvectors: Given a 2×2 matrix A,

- 1. The characteristic equation can have two real roots, one real root of multiplicity two, or two complex conjugate roots.
- 2. Given an eigenvector \mathbf{Y}_0 associated to an eigenvalue λ , then any nonzero scalar multiple \mathbf{Y}_0 is also an eigenvector associated to λ .
- 3. Eigenvectors associated to distinct eigenvalues are linearly independent.

Summary of Case of Two Distinct Real Eigenvalues

Suppose A is a matrix with two eigenvalues λ_1 and λ_2 . To be consistent, we will assume that $\lambda_1 < \lambda_2$, that \mathbf{V}_1 is an eigenvector associated to λ_1 , and that \mathbf{V}_2 is an eigenvector associated to λ_2 . The general solution of

$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$

is $\mathbf{Y}(t) = k_1 e^{\lambda_1 t} \mathbf{V}_1 + k_2 e^{\lambda_2 t} \mathbf{V}_2.$

Case 1: $\lambda_1 < \lambda_2 < 0$.

MA 226

Example. Consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 1\\ -1 & 0 \end{pmatrix} \mathbf{Y}.$$

Sketching component graphs

Once we understand the phase portrait, we should also be able to sketch the component graphs without HPGSystemSolver.

For example, once again consider

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 1\\ -1 & 0 \end{pmatrix} \mathbf{Y}.$$

Let's sketch the x(t)- and y(t)-graphs that correspond to the initial conditions (-3, 2) and (3, 2).

