MA 226 March 26, 2015

More on the example from last class

Example. Once again consider

dY -3 1
r ( 10 ) Y.
For this example, the eigenvalues are A = %(—3 +/5). Both are negative.

The slope of the eigenline that corresponds to the “fast” eigenvalue \; = %(—3 —V5)is
approximately 0.4, and the slope of the eigenline that corresponds to the “slow” eigenvalue
Ao = 2(=3+1/5) is approximately 2.6.

Sketching component graphs

Once we understand the phase portrait, we should also be able to sketch the component
graphs without HPGSystemSolver.

Let’s sketch the z(t)- and y(t)-graphs that correspond to the initial conditions (—3,2)

and (3,2) for
Y (-3 1
ra ( 10 ) Y.
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Case 2: A\ <0 < As.

Example. Consider

Y 4 -5
%_(—2 1)Y‘

The eigenvalues are A\; = —1 and Ay = 6. The \;-eigenline is the diagonal line y; = x1, and

the Ag-eigenline is the line yo = —%xg.
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Case 3: 0 < A1 < Ao

Example. Consider dY /dt = BY where

3 -1
B - ( >l ) |
Note that B = —A where A is the matrix used in the example on page 1. The eigenvalues
of B are A = 1(3+1/5). Both are positive.

The slope of the eigenline that corresponds to the “fast” eigenvalue \; = %(3 +/5) is
approximately 0.4, and the slope of the eigenline that corresponds to the “slow” eigenvalue
Ao = %(3 —+/B) is approximately 2.6.

«

sink (A < Ay < 0) saddle (A} < 0 < \p) source (0 < A\; < Ag)
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Complex eigenvalues

What happens if the eigenvalues of a linear system are complex numbers?
Example. Consider
' -3 2
ar ( 1 -1 ) Y.

Let’s see that happens if we take a look at this system using MatrixFields, and then we’ll
compute the eigenstuff for this matrix.

Eigenvalues:

Figenvectors:

(Lots of blank space on the next page.)
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We now have a complex-valued solution of the form

; 2
_ (—2+i)t
Y.(t)=¢e ( 14 ) :

There are lots of questions that come with this formula. First, what does the formula
mean? Second, what good is it given that we are interested in real-valued solutions to our
linear systems?
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Once again Euler comes to the rescue: Remember the power series for the exponential
function? It is
- R
e :1+I+E+§+....

Let’s use this series where x = br.
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We use Euler’s formula

e? = cosb +isinb

applied to the complex-valued function e(*+t9)?,

But why does this help us solve our differential equation?

Theorem. Consider dY /dt = AY, where A is a matrix with real entries. If Y (¢) is a
complex-valued solution, then both

ReY.(t) and ImY.(t)

are real-valued solutions, and they are linearly independent.
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Now we can derive the general solution to
dY -3 2
dat ( -1 -1 )Y

: 2
using the complex-valued solution Y, (t) = e(=2+9* < 14+ >



