More on the example from last class
Example. Once again consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right) \mathbf{Y}
$$

For this example, the eigenvalues are $\lambda=\frac{1}{2}(-3 \pm \sqrt{5})$. Both are negative.
The slope of the eigenline that corresponds to the "fast" eigenvalue $\lambda_{1}=\frac{1}{2}(-3-\sqrt{5})$ is approximately 0.4 , and the slope of the eigenline that corresponds to the "slow" eigenvalue $\lambda_{2}=\frac{1}{2}(-3+\sqrt{5})$ is approximately 2.6.

Sketching component graphs
Once we understand the phase portrait, we should also be able to sketch the component graphs without HPGSystemSolver.

Let's sketch the $x(t)$ - and $y(t)$-graphs that correspond to the initial conditions $(-3,2)$ and $(3,2)$ for

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right) \mathbf{Y}
$$

MA 226	March 26, 2015

Case 2: $\lambda_{1}<0<\lambda_{2}$.
Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
4 & -5 \\
-2 & 1
\end{array}\right) \mathbf{Y}
$$

The eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=6$. The λ_{1}-eigenline is the diagonal line $y_{1}=x_{1}$, and the λ_{2}-eigenline is the line $y_{2}=-\frac{2}{5} x_{2}$.

Case 3: $0<\lambda_{1}<\lambda_{2}$.
Example. Consider $d \mathbf{Y} / d t=\mathbf{B Y}$ where

$$
\mathbf{B}=\left(\begin{array}{rr}
3 & -1 \\
1 & 0
\end{array}\right)
$$

Note that $\mathbf{B}=-\mathbf{A}$ where \mathbf{A} is the matrix used in the example on page 1. The eigenvalues of \mathbf{B} are $\lambda=\frac{1}{2}(3 \pm \sqrt{5})$. Both are positive.

The slope of the eigenline that corresponds to the "fast" eigenvalue $\lambda_{1}=\frac{1}{2}(3+\sqrt{5})$ is approximately 0.4 , and the slope of the eigenline that corresponds to the "slow" eigenvalue $\lambda_{2}=\frac{1}{2}(3-\sqrt{5})$ is approximately 2.6.

Summary for real and distinct (nonzero) eigenvalues

MA 226
March 26, 2015
Complex eigenvalues
What happens if the eigenvalues of a linear system are complex numbers?
Example. Consider

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-3 & 2 \\
-1 & -1
\end{array}\right) \mathbf{Y}
$$

Let's see that happens if we take a look at this system using MatrixFields, and then we'll compute the eigenstuff for this matrix.

Eigenvalues:

Eigenvectors:

(Lots of blank space on the next page.)

We now have a complex-valued solution of the form

$$
\mathbf{Y}_{c}(t)=e^{(-2+i) t}\binom{2}{1+i}
$$

There are lots of questions that come with this formula. First, what does the formula mean? Second, what good is it given that we are interested in real-valued solutions to our linear systems?

MA 226
March 26, 2015
Once again Euler comes to the rescue: Remember the power series for the exponential function? It is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Let's use this series where $x=b i$.

We use Euler's formula

$$
e^{b i}=\cos b+i \sin b
$$

applied to the complex-valued function $e^{(a+b i) t}$.

But why does this help us solve our differential equation?
Theorem. Consider $d \mathbf{Y} / d t=\mathbf{A Y}$, where \mathbf{A} is a matrix with real entries. If $\mathbf{Y}_{c}(t)$ is a complex-valued solution, then both

$$
\operatorname{Re} \mathbf{Y}_{c}(t) \quad \text { and } \quad \operatorname{Im} \mathbf{Y}_{c}(t)
$$

are real-valued solutions, and they are linearly independent.

Now we can derive the general solution to

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
-3 & 2 \\
-1 & -1
\end{array}\right) \mathbf{Y}
$$

using the complex-valued solution $\mathbf{Y}_{c}(t)=e^{(-2+i) t}\binom{2}{1+i}$.

