Last class we studied an example with complex eigenvalues.

Example. Consider
$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$
 where $\mathbf{A} = \begin{pmatrix} -3 & 2 \\ -1 & -1 \end{pmatrix}$.

Its eigenvalues are $\lambda = -2 \pm i$, and by solving the eigenvector equation $\mathbf{A}\mathbf{Y}_0 = (-2+i)\mathbf{Y}_0$, we derived the "straight-line solution"

$$\mathbf{Y}_c(t) = e^{(-2+i)t} \begin{pmatrix} 2\\ 1+i \end{pmatrix}.$$

There are lots of questions that come with this formula. First, what does the formula mean? Second, what good is it given that we are interested in real-valued solutions to our linear systems?

Once again Euler comes to the rescue: Remember the power series for the exponential function? It is

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

Let's use this series where x = bi.

We use Euler's formula

 $e^{bi} = \cos b + i \sin b$

applied to the complex-valued function $e^{(a+bi)t}$.

But why does this help us solve our differential equation?

Theorem. Consider $d\mathbf{Y}/dt = \mathbf{A}\mathbf{Y}$, where \mathbf{A} is a matrix with real entries. If $\mathbf{Y}_c(t)$ is a complex-valued solution, then both

$$\operatorname{Re}\mathbf{Y}_{c}(t)$$
 and $\operatorname{Im}\mathbf{Y}_{c}(t)$

are real-valued solutions, and they are linearly independent.

Now we can derive the general solution to

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -3 & 2\\ -1 & -1 \end{pmatrix} \mathbf{Y}$$

using the complex-valued solution $\mathbf{Y}_{c}(t) = e^{(-2+i)t} \begin{pmatrix} 2\\ 1+i \end{pmatrix}$.

The geometry of complex eigenvalues

Example 1.
$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$$
 where $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

The characteristic polynomial of **A** is $\lambda^2 + 1$, so the eigenvalues are $\lambda = \pm i$. One eigenvector associated to the eigenvalue $\lambda = i$ is

$$\mathbf{Y}_0 = \left(egin{array}{c} i \ 1 \end{array}
ight).$$

A solution curve and two pairs of x(t)- and y(t)-graphs are shown below.

Example 2. $\frac{d\mathbf{Y}}{dt} = \mathbf{B}\mathbf{Y}$ where $\mathbf{B} = \begin{pmatrix} 2 & -2 \\ 4 & -2 \end{pmatrix}$.

The characteristic polynomial of **B** is $\lambda^2 + 4$, so the eigenvalues are $\lambda = \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\2\end{array}\right)$$

We get ellipses centered at the origin in the phase plane.

Example 3. $\frac{d\mathbf{Y}}{dt} = \mathbf{C}\mathbf{Y}$ where $\mathbf{C} = \begin{pmatrix} 1.9 & -2 \\ 4 & -2.1 \end{pmatrix}$.

The characteristic polynomial of **C** is $\lambda^2 + 0.2\lambda + 4.01$, so the eigenvalues are $\lambda = -0.1 \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = -0.1 + 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\2\end{array}\right).$$

MA 226

Summary: Linear systems with complex eigenvalues $\lambda = a \pm bi$

Here are the possible phase portraits:

What information can you get just from the complex eigenvalue alone?

Recall Example 2. The eigenvalues are $\lambda = \pm 2i$. Here are the x(t)- and y(t)-graphs of a typical solution:

In Example 3, the eigenvalues are $\lambda = -0.1 \pm 2i$. Here are the x(t)- and y(t)-graphs of a typical solution:

Frequency versus period: The solutions in Example 3 are not periodic in the strict sense. There is no time T such that

x(t+T) = x(t) and y(t+T) = y(t)

for all t. However, there is a period associated to these solutions. In the text, we call this the **natural period** of the solutions.

Perhaps it is best to think about these solutions as oscillating solutions that are decaying over time and to measure the oscillations in terms of their **frequency**.

Definition. The *frequency* F of an oscillating function g(t) is the number of cycles that g(t) makes in one unit of time.

Suppose that g(t) is oscillating periodically with "period" T. What is its frequency F?

Example. Consider the standard sinusoidal functions $g(t) = \cos \beta t$ and $g(t) = \sin \beta t$.

Suppose we measure frequency in radians rather than in cycles. This measure of frequency is often called **angular frequency**. Let's denote the angular frequency by f. Then

$$f = 2\pi F.$$