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Predator-prey versus mass-spring
Example. The predator-prey system, a 2D first-order autonomous system,

dR

— =aR — bRF
dt

dF

— =—cF + dRF.
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Example. The mass-spring system, a second-order autonomous equation,

d?y

Although they seem quite different, they have more in common than one might think. In
particular, the mass-spring system can also be written as a first-order system by introducing
the “new” variable v (which is just dy/dt). We get

In what ways is the mass-spring system similar to the predator-prey system?
An initial condition for the predator-prey system is a pair (Rg, Fy) of population values.

An initial condition for the mass-spring system is also a pair (yo,v9). The first number
indicates the initial displacement and the second number indicates the initial velocity.

Since the mass-spring system can be expressed as a system, all of the terms that we
discussed for the predator-prey system apply to the mass-spring system as well (equilibrium
solutions, component graphs, phase plane, solution curve, phase portrait, ... ).
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One way that the two systems differ is by the fact that we can find formulas for the
solutions of the mass-spring system but not for the predator-prey system.

For example, consider the special case of the mass-spring system where k& = m. We get

d*y

ae =Y

and we can guess some solutions to this equation:

The equivalent system
dy
o=
dv
=
has one (y(t),v(t)) pair of solutions for each solution to the second-order equation:

v

Y

What are the initial conditions for these solutions?
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The vector field of an autonomous system

We get a better geometric understanding of the solutions of a first-order system of differ-
ential equations if we rewrite the system as a vector equation that applies to a vector-valued
function.

Consider the system

dx
dy
= g(z,y)

with independent variable ¢ and dependent variables x and y. We use the right-hand side of
this system to form a vector field

Then the (scalar) system of differential equations can be rewritten as one vector differential
equation

dY
— =F(Y).
o = F(Y)

Example 1. Let’s consider the simple mass-spring system with £ = m, but this time we’ll
write it using the variables z and y to be consistent with the HPGSystemSolver notation:
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Now let’s rewrite this system in vector notation:

Consider one of the solutions that we guessed earlier (translated into the xy-notation):

Now for the geometric interpretation of o F(Y), where

-a(1)-( 1)

We use HPGSystemSolver to help visualize the vector field and the solutions.

Y
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Summary for the simple mass-spring system:
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Example 2. Consider the system
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Consider the following 8 first-order systems:
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Four of the associated direction fields are shown below. Pair the direction fields with their
associated systems. Provide a brief justification for your choice.

Direction Field A Direction Field B
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