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More on sinusoidal forcing

Last class we considered the following example.

Example.
d2y

dt2
+
dy

dt
+ 2y = cos 2t

We calculated the general solution

y(t) = k1e
−t/2 cos

(√
7

2
t

)
+ k2e

−t/2 sin

(√
7

2
t

)
− 1

4
(cos 2t− sin 2t) .

Let’s ignore the transient part of this solution and focus on the steady-state solution

yp(t) = −1
4

(cos 2t− sin 2t) .
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We computed the steady-state yp(t) using a guessing technique that involved complex
numbers. We complexified the differential equation and solved

d2y

dt2
+
dy

dt
+ 2y = e2i t

by guessing yc(t) = ae2i t. We calculated the complex number

a = −1
4
(1 + i),

and this number tells us everything we need to know about the steady-state solution.
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In order to see why, we use polar coordinates in the complex plane (see pp. 751–755 in
Appendix C of the text).

Let’s rewrite a = −1
4
(1 + i) in this polar form.

What does this polar representation of a tell us about the steady-state solution?
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Sinusoidal forcing in the absense of damping

Now consider the mass-spring system without the dashpot.

Example. Let’s find the general solution to

d2y

dt2
+ 3y = cosωt.

Note the lack of a damping term. We want to see what happens with various forcing
frequencies.
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Unfortunately the parts of the solution that correspond to the associated homogeneous
equation do not die out. So to get some qualitative understanding in this case, we make
a simplifying assumption. We consider the solution that satisfies the initial condition
(y(0), y′(0)) = (0, 0). We obtain

y(t) =
1

3− ω2

(
cosωt− cos

√
3 t
)
.

On the web site, there is a Quicktime animation of the graphs of these solutions as we
vary the forcing frequency ω. We can also visualize these solutions using a parameter in
HPGSystemSolver.

The following trig identity helps us interpret what we see in the animation.

Trig identity:
cos at− cos bt = −2 (sinαt) (sin βt)

where

α =
a+ b

2
and β =

a− b
2

.

The number α is the average of a and b, and β is called the half-difference of a and b.

Example. Let’s use this trig identity to get a rough idea of the graph of

cosωt− cos
√

3 t

where ω = 1.6.
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Let’s return to the solution to

d2y

dt2
+ 3y = cosωt

that satisfies the initial condition (y(0), y′(0)) = (0, 0). If ω 6= ±
√

3, the solution is

y(t) =
1

3− ω2
(cosωt− cos

√
3 t).

Applying the trig identity, we obtain

y(t) =
−2

3− ω2
(sinαt) (sin βt)

where

α =
ω +
√

3

2
and β =

ω −
√

3

2
.

Here is the graph of this solution in the case where ω = 1.6.
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What happens if ω =
√

3 ?

Example.
d2y

dt2
+ 3y = cos

√
3 t.

The complexified equation is
d2y

dt2
+ 3y = ei

√
3 t. What guess should we use?

Using the guess yc(t) = atei
√
3t, we get a =

1

2i
√

3
= − 1

2
√

3
i.

If ω =
√

3, the general solution is

y(t) = k1 cos
√

3 t+ k2 sin
√

3 t+
1

2
√

3
t sin

√
3 t.

Here is the graph for the case where k1 = k2 = 0.
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This value of ω is called the resonant value for the frequency of the forcing.
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The resonance value of the forcing should be immediately apparent from the differential
equation.

Example. What is the resonance value of ω for the one-parameter family of equations

d2y

dt2
+ 5y = 4 cosωt ?
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