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Repeated eigenvalues

Sometimes the characteristic polynomial has the same real root twice. When this hap-
pens, we say that the eigenvalues are “repeated.”

Example.
dY

dt
= AY where A =

(
3 2
0 3

)
.

The characteristic polynomial of A is (λ − 3)2, so there is only one eigenvalue, λ = 3.
Let’s calculate the associated eigenvectors:

But we already know how to solve this system. How?
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We obtain the general solution

Y(t) =

(
x(t)
y(t)

)
=

(
x0e

3t + 2y0te
3t

y0e
3t

)
= e3t

(
x0
y0

)
+ te3t

(
2y0
0

)
.

Note that this general solution is not written as a linear combination. Every nontrivial
solution contains the first term, and most solutions contain both terms.

We use this result to motivate a different technique that we use to solve systems with
repeated eigenvalues. We guess a solution of the form

Y(t) = eλtV0 + teλtV1.

Note that the initial condition for this solution is V0.
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Fact from linear algebra: If A is a 2× 2 matrix with a repeated eigenvalue λ and V0

is any vector, then either

1. (A− λI)V0 = 0 (in other words, V0 is an eigenvector), or

2. the vector V1 = (A− λI)V0 is an eigenvector of A.

Example.
dY

dt
= AY where

A =

(
0 1
−4 −4

)
.

The characteristic polynomial of A is λ2 + 4λ+ 4, so λ = −2 is a repeated eigenvalue.
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What is the long-term behavior of a system with a repeated, negative eigenvalue?

It is interesting to look at this example using two of the tools on the CD. Using
LinearPhasePortraits, we can see that this system is on the boundary between spiral
sinks and real sinks.

We can also use HPGSystemSolver to plot the phase portrait and a typical pair of x(t)-
and y(t)-graphs.
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Unusual case of repeated eigenvalues: There is one type of linear system that has repeated
eigenvalues that is different from the examples we have discussed.

Example. Consider dY/dt = AY where A is the diagonal matrix(
λ 0
0 λ

)
.

What are its eigenvalues and eigenvectors?
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Finally consider the example

dY

dt
=

(
−2 1

2 −1

)
Y.

Its characteristic polynomial is λ2 + 3λ. So its eigenvalues are λ = −3 and λ = 0. (If a
system has 0 as an eigenvalue, we say that it is degenerate. The matrix A of coefficients is
singular—see your class notes for March 24.)
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Second-order, linear equations

We now apply what we have learned about linear systems to solve second-order homogeneous
linear equations.

Let’s return to the guessing technique for second-order equations that we learned about
a month ago (see Section 2.3 in the text and your class notes from March 17). In particular,
let’s see how it relates to what we have done with linear systems recently.

Example. Consider the equation 2
d2y

dt2
+ 9

dy

dt
+ 4y = 0.

1. Use a guessing technique to find two nonzero solutions y1(t) and y2(t) that are not
multiples of each other.

2. Convert this equation to a first-order system and determine the analogous solutions
Y1(t) and Y2(t).

3. In what way are Y1(t) and Y2(t) special solutions?
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Let’s see how this guessing technique can be used to solve all second-order homogeneous
equations.

Consider

a
d2y

dt2
+ b

dy

dt
+ cy = 0

with its characteristic equation aλ2 + bλ+ c = 0 as well as the corresponding system

dy

dt
= v

dv

dt
=− c

a
y − b

a
v

with its characteristic equation

det

 −λ 1

− c
a
− b
a
− λ

 = 0.

Useful observation: If λ is an eigenvalue, the vector Y0 =

(
1
λ

)
is always an associated

eigenvector.
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Let’s see what that observation tells us about solutions to the second-order equation.
There are three cases:

1. Two real, distinct, nonzero eigenvalues λ1 and λ2:

2. A complex-conjugate pair of eigenvalues λ = α± iβ, with β 6= 0:
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3. One nonzero real eigenvalue λ of multiplicity two:

Conclusion: We can determine the general solution of a homogeneous linear second-order
equation

a
d2y

dt2
+ b

dy

dt
+ cy = 0

immediately from the characteristic equation aλ2 + bλ+ c = 0.

YOU DO NOT NEED TO CALCULATE THE EIGENVECTORS OR EVEN
REDUCE TO A FIRST-ORDER SYSTEM if you simply want to produce the general
solution of a linear second-order equation.
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