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More on beats and resonance

Last class we discussed the solutions to

d2y

dt2
+ 3y = cosωt

that satisfy the initial condition (y(0), y′(0)) = (0, 0) where ω is a parameter. If ω 6= ±
√

3,
the solution is

y(t) =
1

3− ω2
(cosωt− cos

√
3 t).

Applying a trig identity, we obtain

y(t) =
−2

3− ω2
(sinαt) (sin βt)

where

α =
ω +
√

3

2
and β =

ω −
√

3

2
.

Here is the graph of this solution in the case where ω = 1.6. Note that the average of ω
and
√

3 in this case is approximately 1.67. The half difference is approximately −0.066. The
average yields “rapid” oscillations with a period of approximately 3.76. The half-difference
yields “slow” oscillations with a period of approximately 95. Also,

2

3− 1.62
≈ 4.55.
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What happens if ω =
√

3 ?

Example.
d2y

dt2
+ 3y = cos

√
3 t.

The complexified equation is
d2y

dt2
+ 3y = ei

√
3 t. We guess yc(t) = atei

√
3t, and we get

a =
1

2i
√

3
= − 1

2
√

3
i.

Consequently, if ω =
√

3, the general solution is

y(t) = k1 cos
√

3 t+ k2 sin
√

3 t+
1

2
√

3
t sin

√
3 t.

Here is the graph for the case where k1 = k2 = 0.
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This value of ω is called the resonant value for the frequency of the forcing.

The resonance value of the forcing should be immediately apparent from the differential
equation.

Example. What is the resonance value of ω for the one-parameter family of equations

d2y

dt2
+ 5y = 4 cosωt ?
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Linearization

We would like to apply what we know about linear systems to nonlinear systems.

Example. Consider the van der Pol equation

d2x

dt2
+ (x2 − 1)

dx

dt
+ x = 0.

The corresponding system is
dx

dt
= y

dy

dt
= (1− x2)y − x.

The only equilibrium point for this system is (0, 0). What is the linearized system near (0, 0)?

Example. Consider the (undamped) pendulum

d2θ

dt2
+ sin θ = 0.

The corresponding system is

dθ

dt
= v

dv

dt
= − sin θ.

There are equilibria at (θ, v) = (kπ, 0) for all integers k.

The linearized system near (0, 0) is

dY

dt
=

(
0 1
−1 0

)
Y.
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What is the linearized pendulum near the equilibrium point (π, 0)?
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Given the (nonlinear) system
dx

dt
= f(x, y)

dy

dt
= g(x, y),

its Jacobian at the point (x0, y0) is the matrix

J(x0, y0) =


∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)

∂g

∂x
(x0, y0)

∂g

∂y
(x0, y0)


and its linearization at (x0, y0) is the system

dY

dt
= JY.

For the pendulum, we have one linearization for each equilibrium point:
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For the van der Pol system, we obtain the linearization:

Linearization Theorem Let Y0 be an equilibrium point for the nonlinear autonomous
system

dY

dt
= F(Y)

and let
dY

dt
= JY

be the corresponding linearized system. If detJ 6= 0 and the eigenvalues of J are not purely
imaginary, then the solution curves of the nonlinear system near Y0 behave in the same
qualitative way as the solution curves of the linear system.

Example. Consider the van der Pol system near the origin. The linearized system is

dY

dt
=

(
0 1
−1 1

)
Y.
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Example. Consider the pendulum system. The linearized system near (π, 0) is

dY

dt
=

(
0 1
1 0

)
Y.

Its characteristic equation is λ2 − 1 = 0, and therefore the eigenvalues are ±1. The Lin-
earization Theorem says that this equilibrium point is a nonlinear saddle.

The linearized system near (0, 0) is

dY

dt
=

(
0 1
−1 0

)
Y,

and the characteristic equation is λ2 +1 = 0. The eigenvalues are ±i. This equilibrium point
is a nonlinear center, but this example is misleading. The Linearization Theorem does not
apply to this equilibrium point.

-� π -π π � π
θ

�

7


