MA 226	April 23, 2015

Linearization and purely imaginary eigenvalues
What is special about the case of purely imaginary eigenvalues in the linearization?
Example. Consider the one-parameter family of systems

$$
\begin{aligned}
& \frac{d x}{d t}=-y+\alpha x\left(x^{2}+y^{2}\right) \\
& \frac{d y}{d t}=x+\alpha y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

where α is a parameter. Note that $(0,0)$ is always an equilibrium point.
Consider the vector field as the sum of the two vector fields

$$
\mathbf{J}\binom{x}{y}=\binom{-y}{x} \quad \text { and } \quad \mathbf{R}\binom{x}{y}=\alpha\left(x^{2}+y^{2}\right)\binom{x}{y} .
$$

The Laplace transform
For the remainder of the semester, we are going to take a somewhat different approach to the solution of differential equations. We are going to study a way of transforming differential equations into algebraic equations.

We begin with a little review of improper integrals.
Example. Consider the improper integral

$$
\int_{0}^{\infty} e^{-2 t} d t
$$

Example. Consider the improper integrals

$$
\int_{0}^{\infty} e^{-s t} d t
$$

for various values of s.

Definition. The Laplace transform of the function $y(t)$ is the function

$$
Y(s)=\int_{0}^{\infty} y(t) e^{-s t} d t
$$

This transform is an "operator" (a function on functions). It transforms the function $y(t)$ into the function $Y(s)$.

Notation: We often represent this operator using the script letter \mathcal{L}. In other words,

$$
\mathcal{L}[y]=Y
$$

For example, $\mathcal{L}[1]=\frac{1}{s}$.
Note that, even if $y(t)$ is defined for all t, the Laplace transform $Y(s)$ may not be defined for all s.

Example. Let's compute $\mathcal{L}\left[e^{a t}\right]$ using the definition and the improper integrals we have already computed:

Examples. Using Mathematica to calculate the improper integrals, we see that:

$$
\begin{aligned}
\mathcal{L}[\sin t] & =\frac{1}{s^{2}+1} \quad \text { for } \quad s>0 \\
\mathcal{L}\left[e^{2 t} \sin 3 t\right] & =\frac{3}{s^{2}-4 s+13} \quad \text { for } \quad s>2 \\
\mathcal{L}\left[t^{4}\right] & =\frac{24}{s^{5}} \text { for } \quad s>0 \\
\mathcal{L}[\sin 2 t] & =\frac{2}{s^{2}+4} \text { for } \quad s>0 \\
\mathcal{L}[t \cos \sqrt{2} t] & =\frac{s^{2}-2}{\left(s^{2}+2\right)^{2}} \quad \text { for } \quad s>0 \\
\mathcal{L}\left[e^{i \omega t}\right] & =\frac{1}{s-i \omega} \text { for } \quad s>0
\end{aligned}
$$

Properties of the Laplace transform There are two properties of the Laplace transform that make it well suited for solving linear differential equations:

1. $\mathcal{L}\left[\frac{d y}{d t}\right]=s \mathcal{L}[y]-y(0)$
2. \mathcal{L} is a linear transform

Both of these properties are extremely important, but the surprising one is \#1. Let's consider

$$
\mathcal{L}\left[\frac{d y}{d t}\right]=\int_{0}^{\infty}\left(\frac{d y}{d t}\right) e^{-s t} d t
$$

In fact, before we consider the improper integral, let's apply the method of integration by parts to the indefinite integral

$$
\int\left(\frac{d y}{d t}\right) e^{-s t} d t
$$

Now let's see how we can use the Laplace transform to solve an initial-value problem.
Example. Solve the IVP

$$
\frac{d y}{d t}-3 y=e^{2 t}, \quad y(0)=4
$$

1. Transform both sides of the equation:
2. Solve for $\mathcal{L}[y]$:
3. Calculate the inverse Laplace transform:

Is this the right answer? Do we need Laplace transforms to calculate it?

