The Laplace transform and discontinuous differential equations

Last class we defined the Laplace transform.

Definition. The Laplace transform of the function y(t) is the function

$$Y(s) = \int_0^\infty y(t) \, e^{-st} \, dt.$$

This transform is an "operator" (a function on functions). It transforms the function y(t) into the function Y(s).

Notation: We often represent this operator using the script letter \mathcal{L} . In other words,

$$\mathcal{L}[y] = Y_{\cdot}$$

For example,

$$\mathcal{L}[1] = \frac{1}{s},$$
$$\mathcal{L}[e^{at}] = \frac{1}{s-a}, \text{ and}$$
$$\mathcal{L}[\sin t] = \frac{1}{s^2 + 1}.$$

Note that even if y(t) is defined for all t, the Laplace transform Y(s) may not be defined for all s.

Properties of the Laplace transform There are two properties of the Laplace transform that make it well suited for solving linear differential equations:

- 1. $\mathcal{L}\left[\frac{dy}{dt}\right] = s\mathcal{L}[y] y(0)$ (\mathcal{L} turns differentiation into multiplication)
- 2. \mathcal{L} is a linear transform:

(a)
$$\mathcal{L}[y_1 + y_2] = \mathcal{L}[y_1] + \mathcal{L}[y_2]$$

(b) $\mathcal{L}[ky] = k\mathcal{L}[y]$ if k is a constant

Discontinuous differential equations

The Laplace transform works well on linear differential equations that are discontinuous in one way or another.

Definition. The Heaviside function $u_a(t)$ is the function defined by

$$u_a(t) = \begin{cases} 0, & \text{if } t < a; \\ 1, & \text{if } t \ge a. \end{cases}$$

Thus $u_a(t)$ has a discontinuity at t = a where it jumps from 0 to 1. Note that the step(t) function in DETools is the same function as $u_0(t)$ and that $u_a(t) = \text{step(t-a)}$.

Here's how you can use the Heaviside function to avoid piecewise definitions: Example. Consider $g(t) = 2t + u_1(t)(2 - 2t)$.

Laplace transforms are very convenient if we have discontinuous forcing. Remember the process for solving differential equations using Laplace transforms:

- 1. Transform both sides of the differential equation.
- 2. Determine $\mathcal{L}[y]$.
- 3. Compute the inverse Laplace transform of $\mathcal{L}[y]$.

How do we calculate the Laplace transform of a discontinuous function?

Example. Let's calculate $\mathcal{L}[u_a]$ directly from the definition of \mathcal{L} .

In order to calculate inverse Laplace transforms, we need another property of the transform.

Rule 3: Shifting the *t*-axis. $\mathcal{L}[u_a(t)f(t-a)] = e^{-as}\mathcal{L}[f].$

Example. Calculate $\mathcal{L}[g]$ where $g(t) = u_2(t) e^{-(t-2)}$.

Note: We usually use Rule 3 in reverse.

Why does the shifting rule work the way that it does?

Shifting the t-axis. Let's compute

 $\mathcal{L}[u_a(t)f(t-a)] =$

Now let's see how we can use these properties of the Laplace transform to solve an initial-value problem that involves discontinuous forcing.

Example. Solve the initial-value problem

$$\frac{dv}{dt} + v = u_2(t), \quad v(0) = 3.$$

1. Transform both sides of the equation:

2. Solve for $\mathcal{L}[v]$:

3. Calculate the inverse Laplace transform:

Now let's plot the solution to the initial-value problem using HPGSolver. The graph of the solution is shown on the left below. The graph on the right is the graph of the function $u_2(t)(1-e^{-(t-2)})$.

Laplace transforms and second-order equations

So far we have only applied the Laplace transform to first-order equations. Now we consider second-order equations.

Recall the rule for Laplace transforms of derivatives: $\mathcal{L}\left[\frac{dy}{dt}\right] = s\mathcal{L}[y] - y(0)$. What does this rule say about $\mathcal{L}\left[\frac{d^2y}{dt^2}\right]$?

Now that we have this rule, we also need to add to our table of Laplace transforms. Since sine and cosine often appear as parts of the solutions to second-order equations, let's determine their Laplace transforms.

There are a number of ways to compute these transforms—using integration by parts, using Euler's formula, and even using the fact that sine and cosine are solutions to certain very special second-order equations. *Mathematica* tells us that

$$\mathcal{L}[e^{i\omega t}] = \frac{1}{s - i\omega}$$

Let's use this fact to determine $\mathcal{L}[\sin \omega t]$ and $\mathcal{L}[\cos \omega t]$.

Now that we know the transforms of sine and cosine, let's see how we use them.

Example. Compute

$$\mathcal{L}^{-1}\left[\frac{2s+1}{s^2+9}\right].$$

Now for a little practice with the third rule for transforms:

Example. Compute

$$\mathcal{L}^{-1}\left[\frac{8e^{-10s}}{(s^2+9)(s^2+1)}\right].$$