The Laplace transform and discontinuous differential equations
Last class we defined the Laplace transform.
Definition. The Laplace transform of the function $y(t)$ is the function

$$
Y(s)=\int_{0}^{\infty} y(t) e^{-s t} d t
$$

This transform is an "operator" (a function on functions). It transforms the function $y(t)$ into the function $Y(s)$.

Notation: We often represent this operator using the script letter \mathcal{L}. In other words,

$$
\mathcal{L}[y]=Y .
$$

For example,

$$
\begin{aligned}
\mathcal{L}[1] & =\frac{1}{s} \\
\mathcal{L}\left[e^{a t}\right] & =\frac{1}{s-a}, \quad \text { and } \\
\mathcal{L}[\sin t] & =\frac{1}{s^{2}+1} .
\end{aligned}
$$

Note that even if $y(t)$ is defined for all t, the Laplace transform $Y(s)$ may not be defined for all s.

Properties of the Laplace transform There are two properties of the Laplace transform that make it well suited for solving linear differential equations:

1. $\mathcal{L}\left[\frac{d y}{d t}\right]=s \mathcal{L}[y]-y(0) \quad(\mathcal{L}$ turns differentiation into multiplication $)$
2. \mathcal{L} is a linear transform:
(a) $\mathcal{L}\left[y_{1}+y_{2}\right]=\mathcal{L}\left[y_{1}\right]+\mathcal{L}\left[y_{2}\right]$
(b) $\mathcal{L}[k y]=k \mathcal{L}[y]$ if k is a constant

Discontinuous differential equations
The Laplace transform works well on linear differential equations that are discontinuous in one way or another.

Definition. The Heaviside function $u_{a}(t)$ is the function defined by

$$
u_{a}(t)= \begin{cases}0, & \text { if } t<a \\ 1, & \text { if } t \geq a\end{cases}
$$

Thus $u_{a}(t)$ has a discontinuity at $t=a$ where it jumps from 0 to 1 . Note that the step (t) function in DETools is the same function as $u_{0}(t)$ and that $u_{a}(t)=\operatorname{step}(\mathrm{t}-\mathrm{a})$.

Here's how you can use the Heaviside function to avoid piecewise definitions:
Example. Consider $g(t)=2 t+u_{1}(t)(2-2 t)$.

Laplace transforms are very convenient if we have discontinuous forcing. Remember the process for solving differential equations using Laplace transforms:

1. Transform both sides of the differential equation.
2. Determine $\mathcal{L}[y]$.
3. Compute the inverse Laplace transform of $\mathcal{L}[y]$.

How do we calculate the Laplace transform of a discontinuous function?
Example. Let's calculate $\mathcal{L}\left[u_{a}\right]$ directly from the definition of \mathcal{L}.

In order to calculate inverse Laplace transforms, we need another property of the transform.

Rule 3: Shifting the t-axis. $\quad \mathcal{L}\left[u_{a}(t) f(t-a)\right]=e^{-a s} \mathcal{L}[f]$.

Example. Calculate $\mathcal{L}[g]$ where $g(t)=u_{2}(t) e^{-(t-2)}$.

Note: We usually use Rule 3 in reverse.

Why does the shifting rule work the way that it does?
Shifting the t-axis. Let's compute
$\mathcal{L}\left[u_{a}(t) f(t-a)\right]=$

Now let's see how we can use these properties of the Laplace transform to solve an initial-value problem that involves discontinuous forcing.

Example. Solve the initial-value problem

$$
\frac{d v}{d t}+v=u_{2}(t), \quad v(0)=3
$$

1. Transform both sides of the equation:
2. Solve for $\mathcal{L}[v]$:
3. Calculate the inverse Laplace transform:

Now let's plot the solution to the initial-value problem using HPGSolver. The graph of the solution is shown on the left below. The graph on the right is the graph of the function $u_{2}(t)\left(1-e^{-(t-2)}\right)$.

Laplace transforms and second-order equations
So far we have only applied the Laplace transform to first-order equations. Now we consider second-order equations.
Recall the rule for Laplace transforms of derivatives: $\mathcal{L}\left[\frac{d y}{d t}\right]=s \mathcal{L}[y]-y(0)$. What does this rule say about $\mathcal{L}\left[\frac{d^{2} y}{d t^{2}}\right]$?

Now that we have this rule, we also need to add to our table of Laplace transforms. Since sine and cosine often appear as parts of the solutions to second-order equations, let's determine their Laplace transforms.

There are a number of ways to compute these transforms-using integration by parts, using Euler's formula, and even using the fact that sine and cosine are solutions to certain very special second-order equations. Mathematica tells us that

$$
\mathcal{L}\left[e^{i \omega t}\right]=\frac{1}{s-i \omega} .
$$

Let's use this fact to determine $\mathcal{L}[\sin \omega t]$ and $\mathcal{L}[\cos \omega t]$.

Now that we know the transforms of sine and cosine, let's see how we use them.
Example. Compute

$$
\mathcal{L}^{-1}\left[\frac{2 s+1}{s^{2}+9}\right] .
$$

Now for a little practice with the third rule for transforms:
Example. Compute

$$
\mathcal{L}^{-1}\left[\frac{8 e^{-10 s}}{\left(s^{2}+9\right)\left(s^{2}+1\right)}\right] .
$$

