A comment about the solution to the initial-value problem from last class
Here are the graphs that I showed last class when we solved the initial-value problem

$$
\frac{d v}{d t}+v=u_{2}(t), \quad v(0)=3
$$

the solution $v(t)=3 e^{-t}+u_{2}(t)\left(1-e^{-(t-2)}\right)$

the function $u_{2}(t)\left(1-e^{-(t-2)}\right)$

More on the Laplace transform and second-order differential equations
Last class we derived three formulas that are relevant when the Laplace transform is applied to second-order linear equations. We obtained

$$
\mathcal{L}\left[\frac{d^{2} y}{d t^{2}}\right]=s^{2} \mathcal{L}[y]-(y(0)) s-y^{\prime}(0)
$$

and we used the fact that

$$
\mathcal{L}\left[e^{i \omega t}\right]=\frac{1}{s-i \omega}=\frac{s+i \omega}{s^{2}+\omega^{2}}
$$

to derive

$$
\mathcal{L}[\cos \omega t]=\frac{s}{s^{2}+\omega^{2}} \quad \text { and } \quad \mathcal{L}[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}}
$$

Now that we know the transforms of sine and cosine, let's see how we use them.
Example. Compute

$$
\mathcal{L}^{-1}\left[\frac{2 s+1}{s^{2}+9}\right] .
$$

Now for a little practice with the third rule for transforms. Recall that

$$
\mathcal{L}\left[u_{a}(t) f(t-a)\right]=e^{-a s} \mathcal{L}[f] .
$$

Example. Compute

$$
\mathcal{L}^{-1}\left[\frac{8 e^{-10 s}}{\left(s^{2}+9\right)\left(s^{2}+1\right)}\right] .
$$

Now let's use what we have learned to solve the initial-value problem

$$
\frac{d^{2} y}{d t^{2}}+9 y=8 u_{10}(t) \sin (t-10), \quad y(0)=2, \quad y^{\prime}(0)=1
$$

Here is the graph of the forcing function $8 u_{10}(t) \sin (t-10)$:

Here are the graphs of the two functions that combine to give us the desired solution.

Here is the graph of the solution

