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Quick recap of the end of last class

Consider the second-order, linear equation

a
d2y

dt2
+ b

dy

dt
+ cy = 0.

We have two ways to solve it:

1. By guessing y(t) = eλt. That technique was described in class on March 17 (see
Section 2.3 in the text). Using that method we obtain the characteristic equation

aλ2 + bλ+ c = 0.

2. We can convert the second-order equation to a first-order system and use the eigen-
value/eigenvector approach. The characteristic equation for the eigenvalues of the
associated system is

λ2 +
b

a
λ+

c

a
= 0.

Useful observation: If λ is an eigenvalue, the vector Y0 =

(
1
λ

)
is always an associated

eigenvector.

Note that these two characteristic equations are equivalent.

The observant student will note that we only discussed the case where the roots of the
characteristic equation are real in Section 2.3 (see the top of page 187). Now we want
to deal with all possibilities using what we know about complex eigenvalues and repeated
eigenvalues.

All second-order linear equations

Let’s use what we know about linear systems along with the eigenvector calculation to
obtain solutions for all second-order linear equations. There are three cases:

1. Two real, distinct, nonzero eigenvalues λ1 and λ2:
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2. A complex-conjugate pair of eigenvalues λ = α± iβ, with β 6= 0:

3. One nonzero real eigenvalue λ of multiplicity two:
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Conclusion: We can determine the general solution of a homogeneous linear second-order
equation

a
d2y

dt2
+ b

dy

dt
+ cy = 0

immediately from the characteristic equation aλ2 + bλ+ c = 0.

YOU DO NOT NEED TO CALCULATE THE EIGENVECTORS OR EVEN
REDUCE TO A FIRST-ORDER SYSTEM if you simply want to produce the general
solution of a linear second-order equation.

Example. Let’s compute the general solution to
d2y

dt2
+ 2

dy

dt
+ y = 0.

Application: We can apply what we have learned to the (damped) harmonic oscillator

m
d2y

dt2
+ b

dy

dt
+ ky = 0.

In this case, we are assuming that the parameters m and k are positive and that b ≥ 0. The
characteristic equation mλ2 + bλ+ k = 0 has eigenvalues

−b±
√
b2 − 4mk

2m
.

There are four cases. In the first case, b = 0. This is the undamped case (see exercise 20 in
Section 2.1).

1. b = 0:
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The remaining three cases assume that b > 0, and they are based on the value of the
discriminant b2 − 4mk.

2. b2 − 4mk < 0:

3. b2 − 4mk = 0:

4. b2 − 4mk > 0:

Example. Consider the one-parameter family of equations

d2y

dt2
+ b

dy

dt
+ y = 0.

In this case, the characteristic equation is λ2 + bλ+ 1 = 0, and consequently, the eigenvalues
are

λ =
−b±

√
b2 − 4

2
.

The value b = 2 is the critical value for this family.

We can see the progression from undamped to underdamped, to critically damped, and
finally to overdamped with a Quicktime animation I have posted on the web site.
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Summary of Phase Portraits

Assume detA 6= 0. Then zero is not an eigenvalue of A.

1. Real and distinct eigenvalues

(a) sink

(b) saddle

(c) source

2. Complex eigenvalues

(a) spiral sink

(b) center

(c) spiral source

3. Real and repeated eigenvalues

(a) sink with one eigenline in the phase portrait

(b) source with one eigenline in the phase portrait

(c) sink where every solution is a straight-line solution

(d) source where every solution is a straight-line solution

What if detA = 0?

You can turn on the trace-determinant plane in the LinearPhasePortraits tool.

Forced equations

For the last four weeks of the semester, all of our differential equations have been au-
tonomous. Now we turn to second-order equations that model systems that are subject to
some type of external forcing. Here are three examples:

Example. The nonlinear pendulum with a pivot point that is subject to vertical oscillations.
The motion of such a pendulum is governed by the second-order nonlinear equation

m
d2θ

dt2
+ b

dθ

dt
+ k sin θ = F sin θ cosωt

where ω determines the frequency of the oscillations of the pivot point and F determines
the amplitude of the oscillations. The Pendulums tool in DETools illustrates this system.
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Example. The linear mass-spring system where the spring is subject to vertical oscilla-
tions. To model this system, we use the standard mass-spring system and add a term that
corresponds to the force added to the system by the oscillations. We get

m
d2y

dt2
+ b

dy

dt
+ ky = F cosωt.

The ForcedMassSpring tool in DETools illustrates this system.

Example. The classic RLC circuit is also modeled by a linear, forced second-order equation.
In DETools, it is modeled by an equation that involves both charge and current. In our text,
we tend to use the equation

LC
d2vc
dt2

+RC
dvc
dt

+ vc = Vs(t)

where vc is the voltage across the capacitor and R, L, and C are the resistance, inductance,
and capacitance parameters. The forcing term Vs(t) is a voltage source which can change
with time. The RLCCircuits tool in DETools illustrates this system with a sinusoidal forcing
function.

In class we will discuss forced linear equations only, but your second project will involve
some experimentation with the forced pendulum.

Our success studying unforced linear systems was due in large part to the Linearity
Principle. For forced linear equations, we are fortunate to have the Extended Linearity
Principle.

Extended Linearity Principle Consider a nonhomogeneous equation (a forced equa-
tion)

a
d2y

dt2
+ b

dy

dt
+ cy = g(t)

and its associated homogeneous equation (the unforced equation)

a
d2y

dt2
+ b

dy

dt
+ cy = 0.

1. Suppose yp(t) is a particular solution of the nonhomogeneous equation and yh(t) is a
solution of the associated homogeneous equation. Then yh(t) + yp(t) is also a solution
of the nonhomogeneous equation.

2. Suppose yp(t) and yq(t) are two solutions of the nonhomogeneous equation. Then
yp(t)− yq(t) is a solution of the associated homogeneous equation.
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Therefore, if k1y1(t)+k2y2(t) is the general solution of the associated homogeneous equation,
then

k1y1(t) + k2y2(t) + yp(t)

is the general solution of the nonhomogeneous equation.

This principle provides the basic framework that we will use to solve linear second-order
forced equations. (At this point in the course, you should go back and review the method
described in Section 1.8 for solving nonhomogeneous first-order linear equations.)

We already know how to find the general solution to the associated homogeneous equa-
tion, so we need only find one solution to the original equation.

Example 1. Consider the equation

d2y

dt2
− dy

dt
− 2y = e3t.
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Here’s another example that looks similar but goes somewhat differently.

Example 2. Consider the equation

d2y

dt2
− dy

dt
− 2y = e−t.
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