## Definition of Limit

Let $f: A \rightarrow \mathbb{R}^{m}$ where $A \subset \mathbb{R}^{n}$ is open, and suppose $\mathbf{x}_{0} \in(A \cup \partial A)$ and $\mathbf{b} \in \mathbb{R}^{m}$.

## Definition

1. Let $N$ be a neighborhood of $\mathbf{b}$. Then $f(\mathbf{x})$ is eventually in $N$ as $\mathbf{x} \rightarrow \mathbf{x}_{0}$ (" $\mathbf{x}$ approaches $\mathbf{x}_{0}{ }^{\prime \prime}$ ) if there exists a neighborhood $U$ of $\mathbf{x}_{0}$ such that

$$
f\left((U \cap A)-\left\{\mathbf{x}_{0}\right\}\right) \subset N .
$$

2. We say that $f(\mathbf{x}) \rightarrow \mathbf{b}$ (" $f(\mathbf{x})$ approaches $\mathbf{b} ")$ as $\mathbf{x} \rightarrow \mathbf{x}_{0}$ if, given any neighborhood $N$ of $\mathbf{b}, f(\mathbf{x})$ is eventually in $N$.

The notation

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} f(\mathbf{x})=\mathbf{b}
$$

is equivalent to part 2 of the definition.
If $f(\mathbf{x})$ does not approach any $\mathbf{b} \in \mathbb{R}^{m}$ (as in part 2 above), then we say that

$$
\lim _{\mathbf{x} \rightarrow \mathbf{X}_{0}} f(\mathbf{x})
$$

does not exist.

## Properties of Limits

1. If $\lim _{\mathbf{X} \rightarrow \mathbf{X}_{0}} f(\mathbf{x})=\mathbf{b}$, then $\lim _{\mathbf{x} \rightarrow \mathbf{X}_{0}} c f(\mathbf{x})=c \mathbf{b}$ for any scalar $c$.
2. Limit of the sum is the sum of the limits.
3. If $f$ and $g$ are both scalar valued, then the limit of the product is the product of the limits.
4. If $f$ is scalar valued and nonzero in a neighborhood of $\mathbf{x}_{0}$ and the limit of $f$ is nonzero, then the limit of $1 / f$ is the reciprocal of the limit of $f$.
5. If $f$ is vector valued, then the limit of $f$ is determined by the limits of all of its component functions.

Each one of these facts about limits yields a corresponding result about continuous functions.

## Continuity of Compositions

If $g$ is continuous at $\mathbf{x}_{0}$ and $f$ is continuous at $g\left(\mathbf{x}_{0}\right)$, then the composition $f \circ g$ is continuous at $\mathbf{x}_{0}$.

## Infinite Sequence Characterization of Limits (Exercise 16 on page 164)

An infinite sequence of points $\mathbf{x}_{k}(k=1,2,3, \ldots)$ in $\mathbb{R}^{m}$ is said to converge to $\mathbf{x}_{0}$ as $k \rightarrow \infty$ if, for any $\epsilon>0$, there is some positive integer $K$ (depending only on $\epsilon$ ) such that $k \geq K$ implies that $\left\|\mathbf{x}_{k}-\mathbf{x}_{0}\right\|<\epsilon$. We often write $\mathbf{x}_{k} \rightarrow \mathbf{x}_{0}$ as $k \rightarrow \infty$.
Informally, this definition is equivalent to the assertion that the sequence $\mathbf{x}_{k}$ is eventually in every neighborhood of $\mathbf{x}_{0}$.

## Limits via Sequences

Let $\mathbf{x}_{0}$ be a point in $A$ and $f: A \rightarrow \mathbb{R}^{n}$. Then

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} f(\mathbf{x})=\mathbf{b}
$$

if and only if $f\left(\mathbf{x}_{k}\right) \rightarrow \mathbf{b}$ for every sequence $\mathbf{x}_{k} \rightarrow \mathbf{x}_{0}$ in $A$.
In other words, we have the limit

$$
f(\mathbf{x}) \rightarrow \mathbf{b} \text { as } \mathbf{x} \rightarrow \mathbf{x}_{0}
$$

if and only if the sequence of images

$$
f\left(\mathbf{x}_{k}\right) \rightarrow \mathbf{b}
$$

for every sequence $\mathbf{x}_{k} \rightarrow \mathbf{x}_{0}$ in $A$.

## Comments:

1. Note that this characterization of limits via sequences uses two sequences - the sequence $\mathbf{x}_{k} \rightarrow \mathbf{x}_{0}$ and the sequence of the corresponding images $f\left(\mathbf{x}_{k}\right)$.
2. This characterization is not always so easy to use because you have to show that $f\left(\mathbf{x}_{k}\right) \rightarrow \mathbf{b}$ for every sequence $\mathbf{x}_{k} \rightarrow \mathbf{x}_{0}$, and there are infinitely many such sequences.
3. However, this characterization is very useful if you want to show that a limit does not exist. If you find a sequence approaching $\mathbf{x}_{0}$ whose image sequence does not approach any particular $\mathbf{b}$, then the limit does not exist. Also, if you find two different sequences approaching $\mathbf{x}_{0}$ and their image sequences approach different limits, then the limit does not exist.
