Let $f: A \to \mathbb{R}^m$ where $A \subset \mathbb{R}^n$ is open, and suppose $\mathbf{x}_0 \in (A \cup \partial A)$ and $\mathbf{b} \in \mathbb{R}^m$.

Definition

1. Let N be a neighborhood of **b**. Then $f(\mathbf{x})$ is eventually in N as $\mathbf{x} \to \mathbf{x}_0$ ("**x** approaches \mathbf{x}_0 ") if there exists a neighborhood U of \mathbf{x}_0 such that

$$f((U \cap A) - \{\mathbf{x}_0\}) \subset N.$$

2. We say that $f(\mathbf{x}) \to \mathbf{b}$ (" $f(\mathbf{x})$ approaches \mathbf{b} ") as $\mathbf{x} \to \mathbf{x}_0$ if, given any neighborhood N of \mathbf{b} , $f(\mathbf{x})$ is eventually in N.

The notation

$$\lim_{\mathbf{X}\to\mathbf{X}_0}f(\mathbf{x})=\mathbf{b}$$

is equivalent to part 2 of the definition.

If $f(\mathbf{x})$ does not approach any $\mathbf{b} \in \mathbb{R}^m$ (as in part 2 above), then we say that

$$\lim_{\mathbf{X}\to\mathbf{X}_0}f(\mathbf{x})$$

does not exist.

Properties of Limits

- 1. If $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = \mathbf{b}$, then $\lim_{\mathbf{x}\to\mathbf{x}_0} cf(\mathbf{x}) = c\mathbf{b}$ for any scalar c.
- 2. Limit of the sum is the sum of the limits.
- 3. If f and g are both scalar valued, then the limit of the product is the product of the limits.
- 4. If f is scalar valued and nonzero in a neighborhood of \mathbf{x}_0 and the limit of f is nonzero, then the limit of 1/f is the reciprocal of the limit of f.
- 5. If f is vector valued, then the limit of f is determined by the limits of all of its component functions.

Each one of these facts about limits yields a corresponding result about continuous functions.

Continuity of Compositions

If g is continuous at \mathbf{x}_0 and f is continuous at $g(\mathbf{x}_0)$, then the composition $f \circ g$ is continuous at \mathbf{x}_0 .

Infinite Sequence Characterization of Limits (Exercise 16 on page 164)

An infinite sequence of points \mathbf{x}_k (k = 1, 2, 3, ...) in \mathbb{R}^m is said to **converge to** \mathbf{x}_0 as $k \to \infty$ if, for any $\epsilon > 0$, there is some positive integer K (depending only on ϵ) such that $k \ge K$ implies that $||\mathbf{x}_k - \mathbf{x}_0|| < \epsilon$. We often write $\mathbf{x}_k \to \mathbf{x}_0$ as $k \to \infty$.

Informally, this definition is equivalent to the assertion that the sequence \mathbf{x}_k is eventually in every neighborhood of \mathbf{x}_0 .

Limits via Sequences

Let \mathbf{x}_0 be a point in A and $f: A \to \mathbb{R}^n$. Then

$$\lim_{\mathbf{X}\to\mathbf{X}_0}f(\mathbf{x})=\mathbf{b}$$

if and only if $f(\mathbf{x}_k) \to \mathbf{b}$ for every sequence $\mathbf{x}_k \to \mathbf{x}_0$ in A.

In other words, we have the limit

$$f(\mathbf{x}) \to \mathbf{b} \text{ as } \mathbf{x} \to \mathbf{x}_0$$

if and only if the sequence of images

 $f(\mathbf{x}_k) \to \mathbf{b}$

for every sequence $\mathbf{x}_k \to \mathbf{x}_0$ in A.

Comments:

- 1. Note that this characterization of limits via sequences uses two sequences—the sequence $\mathbf{x}_k \to \mathbf{x}_0$ and the sequence of the corresponding images $f(\mathbf{x}_k)$.
- 2. This characterization is not always so easy to use because you have to show that $f(\mathbf{x}_k) \to \mathbf{b}$ for *every* sequence $\mathbf{x}_k \to \mathbf{x}_0$, and there are infinitely many such sequences.
- 3. However, this characterization is very useful if you want to show that a limit does not exist. If you find a sequence approaching \mathbf{x}_0 whose image sequence does not approach any particular **b**, then the limit does not exist. Also, if you find two different sequences approaching \mathbf{x}_0 and their image sequences approach different limits, then the limit does not exist.