$$
\begin{aligned}
& \hline \hline \text { MA } 230 \quad \text { Problem of the Day } \\
& \text { Let } Q \text { be the region in } \mathbb{R}^{3} \text { bounded by the cylinder } x \\
& \text { plane } y=0 \text {. Calculate } \\
& \qquad \iint_{Q} z d V .
\end{aligned}
$$

Given Q, note that it is clear that

$$
\iiint_{Q} z d V<0
$$

Q is y-simple and the projection Q^{\prime}
of Q into the $x z$-plane is

$$
\left\{(x, z) \backslash x^{2}+z^{2} \leq 9\right\}
$$

Therefore

$$
\begin{aligned}
\iiint_{Q} z d V & =\iint_{Q^{\prime}}\left(\int_{0}^{3-z} z d y\right) d A \\
& =\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\left(3 z-z^{2}\right) d z d x
\end{aligned}
$$

By geometric considuations, we know that

$$
\iint_{Q^{\prime}} 3 z d A=0 .
$$

So we need only compute

$$
\begin{aligned}
& \text { we need only compute } \\
& \begin{aligned}
\int_{-3}^{3} & \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}-z^{2} d z d x
\end{aligned}=\int_{-3}^{3}-\frac{2}{3}\left(9-x^{2}\right)^{3 / 2} d x= \\
& \\
& -\left[\frac{15}{4} x \sqrt{9-x^{2}}-\frac{1}{6} x^{3} \sqrt{9-x^{2}}+\frac{81}{4} \arcsin \frac{x^{3}}{3}\right]_{-}^{3} \\
& \\
& =-\frac{81}{4} \pi \approx-63.62
\end{aligned}
$$

