Determine the formula $T(x, y)$ for the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that corresponds to rotation of \mathbb{R}^{2} about the point $(2,1)$ by 90° in the counterclockwise direction.

Desired $T=T_{3} \circ T_{2} \circ T_{1}$ where
$T_{1}=$ translate plane so that

$$
(2,1) \leftrightarrow(0,0)
$$

$T_{2}=$ rotate plane about origin

$$
\text { by } 90^{\circ}
$$

$T_{3}=$ translate plane so that

$$
(0,0) \mapsto(2,1)
$$

$$
\begin{aligned}
& \text { We have } T_{1}(x, y)=(x-2, y-1) \\
& T_{2}(x, y)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
&=(-y, x) \\
& T_{3}(x, y)=(x+2, y+1)
\end{aligned}
$$

So

$$
\begin{aligned}
T(x, y) & =T_{3}(1-y, x-2) \\
& =(3-y, x-1)
\end{aligned}
$$

