| MA 230 | Problem of the Day | March 28, 2003 |
| :--- | :---: | :---: |

Use spherical coordinates to compute the volume of the solid that is inside the sphere

$$
x^{2}+y^{2}+z^{2}=5
$$

and "outside" the cone

$$
z^{2}=3 x^{2}+3 y^{2} .
$$

Another way of saying "outside" the cone is

$$
\begin{aligned}
& z^{2} \leq 3 x^{2}+3 y^{2} . \\
& \text { Outside the che: } \\
& \text { Regis is detumined } \\
& \text { by } 0 \leqslant \rho \leqslant \sqrt{5} \\
& 0 \leq \theta \leq 2 \pi \\
& \frac{\pi}{6} \leqslant \phi \leqslant \frac{5 \pi}{6} \\
& \text { Volume }=\iint_{R} 1 d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{5}} \int_{-\pi / 6}^{\frac{5 \pi}{6}} \rho^{2} \sin \phi d \phi d \rho d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{5}} \rho^{2}[-\cos \phi]_{\pi / 6}^{5 \pi / 6} d \rho d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{5}} \rho^{2} \sqrt{3} d \rho d \theta \\
& =\int_{0}^{2 \pi} \sqrt{3}\left[\frac{\rho^{3}}{3}\right]_{0}^{\sqrt{5}} d \theta \\
& =(2 \pi)(5) \frac{\sqrt{15}}{3}=\frac{10 \pi}{3} \sqrt{15}
\end{aligned}
$$

