Compute the center of mass of the region in the first octant enclosed by the sphere

$$
x^{2}+y^{2}+z^{2}=4
$$

assuming that the density is constant.
Since the radius is 2 and the density δ is constant, the mass is

$$
\frac{\left(\frac{4}{3} \pi\right)(8)(\delta)}{8}=\frac{4}{3} \pi \delta
$$

To calculate the z-coordinate of the center of mass, we must calculate

$$
\iiint_{R} \delta z d V=\delta \iiint_{R} z d V
$$

Using spherical coordinates, we have

$$
\begin{aligned}
\delta & \int_{0}^{\pi / 2} \int_{0}^{2} \int_{0}^{\pi / 2}(\rho \cos \phi)\left(\rho^{2} \sin \phi\right) d \phi d \rho d \theta \\
= & \delta \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{3}\left[\int_{0}^{1} u d u\right] d \rho \theta \theta \\
& u=\sin \phi \\
= & \delta \int_{0}^{\pi / 2} \int_{0}^{2} \frac{\rho^{3}}{2} d \rho d \theta=\frac{\delta}{8} \int_{0}^{\pi / 2}\left[\rho^{4}\right]_{0}^{2} d \theta \\
& =\left(\frac{\delta}{8}\right)\left(\frac{\pi}{2}\right)(16)=\delta \pi \\
\Rightarrow & \bar{z}=\frac{\delta \pi}{\frac{4}{3} \pi \delta}=\frac{3}{4} .
\end{aligned}
$$

By symmetry, $\bar{x}=\bar{y}=\bar{z}$.

