Let ℓ_{1} be the line through the points $(1,0,0)$ and $(1,2,2)$, and let ℓ_{2} be the line through the points $(1,1,1)$ and $(1+\sqrt{2}, 2,2)$. Do ℓ_{1} and ℓ_{2} intersect? If so, at what point do they intersect?

$$
\begin{aligned}
\vec{D}_{1} & =\text { direction vector for } l_{1} \\
& =2 \vec{f}+2 \vec{k} \quad \text { or } \vec{t}+\vec{k}
\end{aligned}
$$

$\vec{D}_{2}=$ direction vector for l_{2}

$$
=\sqrt{2} \vec{\tau}+\vec{z}+\vec{k}
$$

$\ell_{1}:$

$$
\begin{aligned}
& x=1 \\
& y=t_{1} \\
& z=t_{1}
\end{aligned}
$$

$$
\begin{aligned}
l_{2}: \quad x & =1+\sqrt{2} t_{2} \\
y & =1+t_{2} \\
z & =1+t_{2}
\end{aligned}
$$

l_{1} intusects $l_{2} \Leftrightarrow t_{2}=0$

$$
t_{1}=1+t_{2}
$$

$\Rightarrow l_{1}$ and l_{2} intersect at $(1,1,1)$.

