Calculate the coordinates of the center of mass of a homogeneous triangular surface with vertices $(1,0,0),(0,2,0)$, and $(0,0,3)$.
triangle T lies above

on the plane

$$
6 x+3 y+2 z=6
$$

T is the graph of $z=g(x, y)$
where $g(x, y)=3-3 x-\frac{3}{2} y$. so

$$
\vec{n}=3 \vec{\tau}+\frac{3}{2} \vec{j}+\vec{k} \text {, and }\|\vec{n}\|=\frac{7}{2}
$$

Therefore $d S=\frac{7}{2} d A$ where A is area
in the $x y$-plane.

$$
\begin{aligned}
\operatorname{area}(T) & =\frac{7}{2} \operatorname{area}\left(T^{*}\right) \\
& =\frac{7}{2}
\end{aligned}
$$

Thin $\bar{x}=\frac{\iint x d S}{\operatorname{arcet}}=\frac{2}{7} \int_{0}^{1} \int_{0}^{2-2 x} x\left(\frac{7}{2}\right) d y d x$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{2-2 x} x d y d x \\
& =\int_{0}^{1} 2 x-2 x^{2} d x \\
& =\left[x^{2}-\frac{2}{3} x^{3}\right]_{0}^{1}=\frac{1}{3}
\end{aligned}
$$

Also

$$
\bar{y}=\frac{\iint_{T} y d S}{\text { area } T}=\frac{2}{7} \int_{0}^{1} \int_{0}^{2-2 x} y\left(\frac{7}{2}\right) d y d x
$$

$$
=\int_{0}^{1} \int_{0}^{2-2 x} y d y d x
$$

$$
=\frac{1}{2} \int_{0}^{1}(2-2 x)^{2} d y d x
$$

$$
=\frac{1}{2} \int_{0}^{1} 4-8 x+4 x^{2} d x
$$

$$
=\frac{1}{2}\left[4 x-4 x^{2}+\frac{4}{3} x^{3}\right]_{0}^{1}
$$

$$
=\frac{1}{2}\left[4-4+\frac{4}{3}\right]=\frac{2}{3}
$$

Also,

$$
\begin{aligned}
& 6 \bar{x}+3 \bar{y}+2 \bar{z}=6 \Rightarrow \\
& 2+2+2 \bar{z}=6 \\
& 2 \bar{z}=2 \Rightarrow \bar{z}=1
\end{aligned}
$$

