Use spherical coordinates to calculate the flux of the vector field

$$
\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}
$$

across the unit sphere

$$
x^{2}+y^{2}+z^{2}=1
$$

Use the outward pointing orientation.
Parametrize sphere using

$$
\Phi(\theta, \phi)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi) .
$$

Then $T_{\theta}=(-\sin \phi \sin \theta) \vec{\imath}+(\sin \phi \cos \theta) \vec{\jmath}$

$$
\begin{aligned}
& T_{\phi}=(\cos \phi \cos \theta) \vec{\imath}+(\cos \phi \sin \theta) \vec{\jmath}+(-\sin \phi) \vec{k} \\
& T_{\phi} \times T_{\theta}=\operatorname{det}\left[\begin{array}{ccc}
\vec{\imath} & \vec{~} & \vec{k} \\
\cos \phi \cos \theta & \cos \phi \sin \theta & -\sin \phi \\
-\sin \phi \sin \theta & \sin \phi \cos \theta & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\sin ^{2} \phi \cos \theta\right) \tau \\
& \left(\sin ^{2} \phi \sin \theta\right) \vec{J}+ \\
= & \left(\sin ^{2} \phi \cos \phi \cos ^{2} \theta+\sin \phi \cos \phi \sin ^{2} \theta\right) \vec{k} \\
& (\sin \phi \sin \phi \sin \theta) \vec{f}+ \\
& (\sin)
\end{aligned}
$$

Evaluatring the vector field along the sphere, we have

$$
\begin{aligned}
& \vec{F}(\Phi(\theta, \phi))= \\
& (\cos \phi) \vec{\tau}+(\sin \phi)(\sin \theta) \vec{J}+(\sin \phi)(\cos \theta) \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Flux across } S=\iint_{S}\left(\vec{F}^{\prime} \cdot \vec{u}\right) d S \vec{u} \text { unit } \\
& \text { normal }
\end{aligned} \quad \iint_{D} \vec{F} \cdot \frac{\vec{T}_{\phi} \times \vec{T}_{\theta}}{\left\|\vec{T}_{\phi} \times \vec{T}_{\theta}\right\|}\left\|\vec{T}_{\phi} \times \vec{T}_{\theta}\right\| d \phi d \theta \quad .
$$

where $D=\{(\phi, \theta) \mid 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi\}$.

$$
\begin{aligned}
F \operatorname{lux}= & \left.\int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{2} \phi\right)(\cos \phi)(\cos \theta)+\left(\sin ^{3} \phi\right)\left(\sin ^{2} \theta\right)+\left(\sin ^{2} \phi\right)(\cos \phi)(\cos \theta) d \phi d \theta \\
= & 2 \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\sin ^{2} \phi\right)(\cos \phi)(\cos \theta) d \phi d \theta+ \\
& \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\sin ^{3} \phi\right)\left(\sin ^{2} \theta\right) d \phi d \theta
\end{aligned}
$$

Since $\int_{0}^{2 \pi}(\cos \theta) d \theta$, the first integral is 0 The sech integral is equal to

$$
\begin{gathered}
\left(\int_{0}^{\pi} \sin ^{2} \theta d \theta\right)\left(\int_{0}^{\pi} \sin ^{3} \phi d \phi\right)= \\
(\pi)\left(\frac{4}{3}\right) \cdot
\end{gathered}
$$

