MA 230	Problem of the Day	April 16, 2003

Consider the line integral

$$
\int_{C}-y^{3} d x+x^{3} d y
$$

where C is the positively-oriented unit circle.

1. Parametrize C and convert this line integral into a regular 1-dim integral. Do not evaluate.
2. Use Green's Theorem to convert this line integral into a double integral. Evaluate this integral.
3. $\vec{c}(t)=\cos t \vec{\imath}+\sin t \vec{t}$ $\vec{c}^{\prime}(t)=-\sin t \vec{\tau}+\cos t \vec{t}$ $\int_{c}-y^{3} d x+x^{3} d y=$

$$
\int_{0}^{2 \pi} \sin ^{4} t+\cos ^{4} t d t
$$

2. $\iint 3 x^{2}+3 y^{2} d A=$

$$
0 \leq x^{2}+y^{2} \leq 1
$$

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(3 r^{2}\right) r d r d \theta=
$$

$$
\int_{0}^{2 \pi} \int_{0}^{7} 3 r^{3} d r d \theta=
$$

$$
\frac{3}{4} \int_{0}^{2 \pi} d \theta=\frac{3}{4}(2 \pi)
$$

$$
=\frac{3 \pi}{2}
$$

