Let C be the curve of intersection of the plane $y+z=1$ and the cylinder

$$
x^{2}+y^{2}=1
$$

Orient C using the orientation that is consistent with the normal vector $\mathbf{M}=\mathbf{j}+\mathbf{k}$ for the plane. Use Stokes' Theorem to calculate the line integral

$$
\int_{C} x^{2} d x+x y d y+z^{3} d z
$$

We have $\vec{F}=x^{2} \vec{\imath}+x y \vec{f}+z^{3} \overrightarrow{k_{k}}$.
Then

$$
\operatorname{curt} \vec{F}=\nabla \times \vec{F}=\operatorname{det}\left[\begin{array}{lll}
\vec{\tau} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & x y & z^{3}
\end{array}\right]
$$

$$
=y \vec{k}
$$

Let S be the surtoce determined by the plane and the cylinder.

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d \underset{\substack{\text { unit } \\ \text { normal }}}{d S}=\iint_{i} \operatorname{curl} \vec{F} \cdot \vec{F} \cdot \vec{m} d A
$$ who $x y$-plane

$$
\begin{aligned}
& D=\left\{(x, y) \backslash x^{2}+y^{2} \leq 1\right\} \\
& \iint_{D} \text { curl} \backslash \vec{F} \cdot \vec{m} d A=\iint_{D} y d A=0
\end{aligned}
$$

(or change to polar coordinates)

