Let

$$
f(x, y)=y \cos x
$$

Find the points on the graph of f where the tangent plane is parallel to the plane

$$
\frac{\partial f}{\partial x}=-y \sin x \quad \frac{\partial f}{\partial y}=\cos x
$$

Normal vector to the tangent plane is $\vec{T}=(-y \sin x) \vec{\tau}+(\cos x) \vec{J}-\vec{k}$

Normal vector to plane is

$$
\vec{N}=\vec{v}-\sqrt{3} \vec{\sigma}+2 \vec{k}
$$

The plomes are parallel if \vec{T} and \vec{N} are parallel, ie., $\vec{T}=\lambda \vec{N}$ for some scalar λ. We have

$$
\begin{aligned}
&\left\{\begin{aligned}
-y \sin x & =\lambda \\
\cos x & =-\sqrt{3} \lambda \\
-1 & =2 \lambda
\end{aligned}\right. \\
& \Rightarrow \lambda=-1 / 2 \Rightarrow \cos x=\frac{\sqrt{3}}{2} \Rightarrow \sin x= \pm \frac{1}{2}
\end{aligned}
$$

We have $x= \pm \frac{\pi}{6}+2 k \pi$. If $x=\frac{\pi}{6}+2 k \pi$, then $y=1$, and the point is $\left(\frac{\pi}{6}+2 k \pi, 1, \frac{\sqrt{3}}{2}\right)$. If $x=-\frac{\pi}{6}+2 k \pi$, then $y=-1$ and the point is $\left(-\frac{\pi}{6}+2 k \pi,-1,-\frac{\sqrt{3}}{2}\right)$.

