Let

$$f(x,y) = y\cos x.$$

Find the points on the graph of f where the tangent plane is parallel to the plane

$$x - \sqrt{3}y + 2z = -2.$$

$$\frac{\partial f}{\partial x} = -y \sin x \qquad \frac{\partial f}{\partial y} = \cos x$$

Normal vector to the tangent plane is $\overrightarrow{T} = (-y\sin x) + (\cos x) = -x$

Normal vector to plane is
$$\vec{N} = \vec{\tau} - \sqrt{3} \vec{\xi} + 2\vec{k}$$

The planes are parallel if $\vec{\tau}$ and $\vec{\tau}$ are parallel, i.e., $\vec{\tau} = \gamma \vec{\tau}$ for some scalar γ . We have

$$\begin{cases} -y \sin x = \lambda \\ \cot x = -\sqrt{3} \lambda \\ -1 = 2 \lambda \end{cases}$$

 $\Rightarrow \gamma = -\frac{1}{2} \Rightarrow \cos \chi = \frac{\sqrt{3}}{2} \Rightarrow \sin \chi = \pm \frac{1}{2}.$ We have $\chi = \pm \frac{\pi}{6} + 2k\pi$. If $\chi = \frac{\pi}{6} + 2k\pi$,
then y = 1, and the point is $(\frac{\pi}{6} + 2k\pi, 1, \frac{\sqrt{3}}{2}).$ If $\chi = -\frac{\pi}{6} + 2k\pi$, then y = -1 and the point is $(\frac{\pi}{6} + 2k\pi, -1, -\frac{\sqrt{3}}{2}).$