MA 230	Take Home Examination II	April 9, 2003

1. (20 points) The following volume problem appeared in Marilyn Nos Savant's April 20, 1996 column:

Start with a solid sphere of any radius greater than 6 inches. Bore a cylindrical hole through the center of the sphere so that what remains is exactly 6 inches high. (The center line of the cylinder should correspond to a diameter of the sphere.) What is the volume of the solid that remains after the cylindrical hole is removed?

Calculate this volume. Does it depend on the radius R of the original sphere?

and

In other woods. The regin is given by

$$
\left.\begin{array}{rl}
\{(r, \theta, z) \backslash & 0 \leq \theta \leq 2 \pi, \sqrt{R^{2}-9} \leq r \leq R \\
& -\sqrt{R^{2}-r^{2}} \leq z \leq \sqrt{R^{2}-r^{2}}
\end{array}\right\}
$$

Thu e fore,

$$
\text { volume }=\int_{0}^{2 \pi} \int_{\sqrt{R^{2}-9}}^{R} \int_{-\sqrt{R^{2}-r^{2}}}^{\sqrt{R^{2}-r^{2}}} r d z d r d \theta \text {. }
$$

$$
\text { Volume }=\int_{0}^{2 \pi} \int_{\sqrt{R^{2}-9}}^{R} 2 \sqrt{R^{2}-r^{2}} r d r d \theta
$$

If $u=R^{2}-r^{2}$. Then

$$
\begin{aligned}
& d u=-2 r d r \\
& r=R \Rightarrow u=0 \\
& r=\sqrt{R^{2}-9} \Rightarrow u=9
\end{aligned}
$$

Then

$$
\text { volume }=\int_{0}^{2 \pi} \int_{0}^{9} u^{\frac{1}{2}} d u d \theta
$$

Note that this integral does not depend on R. We get

$$
\begin{aligned}
& \text { R. We get } \\
& \text { volume }=\int_{0}^{2 \pi}\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{9} d \theta \\
&=\int_{0}^{2 \pi} 18 d \theta=36 \pi .
\end{aligned}
$$

MA 230	Take Home Examination II	April 9, 2003

2. (20 points) Suppose the D is an elementary region in \mathbb{R}^{3} that is symmetric with respect to the $y z$-plane. In other words, a point (x, y, z) is in D if and only if the point $(-x, y, z)$ is in D. Using the Change of Variables Theorem, show that

$$
\iiint_{D} f(x, y, z) d V=0
$$

if $f(x, y, z)$ is an odd function in x. (A function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is odd in x if $f(-x, y, z)=$ $-f(x, y, z)$ for all $(x, y, z) \in \mathbb{R}^{3}$.)

Subdivide D into two regions D_{1} and D_{2}
such that
$D_{1}=\{(x, y, z) \backslash(x, y, z) \in D$ and $x \geq 0\}$
$D_{2}=\{(x, y, z) \backslash(x, y, z) \in D$ and $x \leq 0\}$
Then $\iiint_{D} f d V=\iiint_{D_{1}} f d V+\iiint_{D_{2}} f d V$.

Consider the mapping $T: D_{1} \rightarrow D_{2}$
given by $T(x, y, z)=(-x, y, z)$
The Jacobian of T is

$$
\operatorname{det}\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=1
$$

By the Change of Variables Theorem, we have

$$
\begin{aligned}
\iiint_{D_{2}} f(x, y, z) d V & =\iiint_{D_{1}} f \cdot T(x, y, z) \backslash-1 \backslash d V \\
& =\iiint_{D_{1}} f(-x, y, z) d V
\end{aligned}
$$

$$
=-1 \iiint_{D_{1}} f(x, y, z) d V
$$

Sine $\quad \iiint_{D_{2}} f d V=-\iiint_{D_{1}} f d V$
we see that $\iiint_{D} f d V=0$.
3. (20 points) The method of least squares approximation is described on page 246 of our text. In this problem, we use notation that is discussed there.
(a) Consider the three data points $\left(x_{1}, y_{1}\right)=(1,1),\left(x_{2}, y_{2}\right)=(2,3)$, and $\left(x_{3}, y_{3}\right)=$ $(3,2)$. Find the equation of the best straight-line fit according to the method of least squares. Calculate the equation for the line directly. (In other words, don't use the result of Exercise 32 on page 247.) Give a rigorous justification of why this line minimizes s.
(b) Solve Exercise 32 on page 247, and use the result to give explicit formulas for m and b.
(c) Solve Exercise 34 on page 247.
(d) Use the method of least squares to find the line that best fits the points $(0,2)$, $(1,4),(1,3),(2,6)$, and $(3,6)$. Plot the points and the line.
(a) We want to minimize

$$
\begin{array}{r}
\text { p }(m, b)=(m+b+1)^{2}+(2 m+b-3)^{2}+(3 m+b-2)^{2} . \\
\text { data point } \\
(1,1)
\end{array}
$$

After so algebra, we obtain

$$
S=14 m^{2}+12 m b-26 m+3 b^{2}-12 b+14
$$

and

$$
\begin{aligned}
& \frac{\partial s}{\partial m}=28 m+12 b-26 \\
& \frac{\partial s}{\partial b}=12 m+6 b-12
\end{aligned}
$$

To determine the critical points, we solve

$$
\left\{\begin{array}{l}
\frac{\partial S}{\partial m}=0 \\
\frac{\partial S}{\partial b}=0
\end{array}\right.
$$

We obtain one critical point,

$$
(m, b)=\left(\frac{1}{2}, 1\right)
$$

Applying the seems partials test we compute

$$
\begin{gathered}
\frac{\partial^{2} s}{\partial m^{2}}=28 \\
\frac{\partial^{2} s}{\partial m \partial b}=12
\end{gathered}
$$

Note that $\frac{\partial^{2} s}{\partial m^{2}}>0$ and

$$
\left(\frac{\partial^{2} s}{\partial m^{2}}\right)\left(\frac{\partial^{2} s}{\partial b^{2}}\right)-\left(\frac{\partial^{2} s}{\partial m \partial b}\right)^{2}>0
$$

and we have a local minimum at the critical point.

There are functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ That have exactly one critical point which is a local minimum but not a global minimum! We can show that $S(m, b)$ is wot one of these functions using some analytic gemetry.
(b)

$$
s(m, b)=\sum\left(y_{i}-m x_{i}-b\right)^{2}
$$

Then $\frac{\partial s}{\partial m}=-2 \sum\left(y_{i}-m x_{i}-b\right)\left(x_{i}\right)$

$$
\frac{\partial s}{\partial b}=-2 \Sigma\left(y_{i}-m x_{i}-b\right)
$$

The critical points satisfy

$$
\begin{aligned}
& \sum\left(x_{i} y_{i}-m x_{i}^{2}-b x_{i}\right)=0 \\
& \sum\left(y_{i}-m x_{i}-b\right)=0
\end{aligned}
$$

The seemed equation implies

$$
m \sum x_{i}+n_{\substack{n \text { terms } \\ \text { in sum }}}
$$

The first equation implies

$$
m \sum x_{i}^{2}+b \sum x_{i}=\sum x_{i} y_{i}
$$

If we let S_{x} denote $\sum x_{i}$
S_{y} denote Σy_{i}
$S_{x^{2}}$ denote $\sum x_{1}^{2}$
$S_{x y}$ denote $\sum x_{i} y_{i}$.
then we have the system of two equations in two unknowns (m and b)

$$
\begin{aligned}
& \left(S_{x}\right) m+n b=S_{y} \\
& \left(S_{x^{2}}\right) m+\left(S_{x}\right) b=S_{x y} .
\end{aligned}
$$

We can write this system as a matrix equation

$$
\left[\begin{array}{cc}
s_{x} & n \\
s_{x^{2}} & s_{x}
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
s_{y} \\
s_{x y}
\end{array}\right] .
$$

Solving we obtain

$$
\begin{aligned}
& \text { Solving we obtain } \\
& {\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{ll}
s_{x} & n \\
s_{x^{2}} & s_{x}
\end{array}\right]^{-1}\left[\begin{array}{l}
s_{y} \\
s_{x y}
\end{array}\right]=\frac{1}{\left(s_{x}\right)^{2}-n s_{x^{2}}}\left[\begin{array}{l}
\left(s_{x}\right)\left(s_{y}\right)-n s_{x y} \\
\left(s_{x}\right)\left(s_{x y}\right)-\left(s_{x^{2}}\right)\left(s_{y}\right)
\end{array}\right]}
\end{aligned}
$$

(c) Using the formulas for $\frac{\partial S}{\partial m}$ and $\frac{\partial s}{\partial b}$ in part (b), we have

$$
\begin{aligned}
& \frac{\partial^{2} s}{\partial m^{2}}=2 \sum x_{i}^{2} \\
& \frac{\partial^{2} s}{\partial b^{2}}=2 n \\
& \frac{\partial^{2} s}{\partial m \partial b}=2 \sum x_{i}
\end{aligned}
$$

It is clear that $\frac{\partial^{2} S}{\partial m^{2}}>0$. We need only compute

$$
\left(\frac{\partial^{2} s}{\partial m^{2}}\right)\left(\frac{\partial^{2} s}{\partial b^{2}}\right)-\left(\frac{\partial^{2} s}{\partial m \partial b}\right)^{2}
$$

Both terms have a factor of 4 that we ignore the rest is

$$
n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}
$$

To see that this expressim is positive, we eliminate all terms of the form x_{i}^{2} from the second sum and obtain

$$
(n-1) \sum x_{i}^{2}-2\left(\sum_{1 \leq i<} x_{i} x_{j}\right)
$$

Note that the secmd sum involves $1+2+3+\ldots+n-1$ terms. Summing we see that the are

$$
\frac{(n-1) n}{2}
$$

terms. For each such tum

$$
-2 x_{i} x_{j},
$$

we select one x_{i}^{2} and me x_{y}^{2} from

$$
(n-1) \sum x_{i}^{2}
$$

Since thus are $(n-1) n$ such terms in this sum, we have enough terms to write

$$
\begin{aligned}
& (n-1) \sum x_{i}^{2}-2\left(\sum_{i \leqslant i<j \leqslant n} x_{i} x_{j}\right)= \\
& \sum_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)^{2} .
\end{aligned}
$$

Since this sum is clearly positive, the seemed derivative test implies that we have a local minimum.
(d) Using the formulas in part (b) we obtain

$$
\begin{aligned}
& m=\frac{19}{13} \approx 1.46 \\
& b=\frac{28}{13} \approx 2.15 .
\end{aligned}
$$

4. (20 points) Rewrite the integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d z d y d x
$$

as an equivalent iterated integral in the five other orders.
First we sketch the solid region of integration.

The solid has five "sides."
Three of the sides lie in the x

coordinate planes.
The original integral
involves projecting the region into the $x y$-plane The corresponding side

If we mtuchange the order in the $x y$-plane, we get

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y}} \int_{0}^{1-x} f(x, y, z) d z d x d y
$$

The projection of the region into the $x z$-plane is the triangle

Using this triangle as our "base", we obtain the two integrals

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x, y, z) d y d z d x \text { and } \\
& \int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-x^{2}} f(x, y, z) d y d x d z
\end{aligned}
$$

Finally the projectim of the region into the $y z$-plane is a square

Unfortunately we need to subdivide the square into two sub regions based on the pryjectim of the
boundary curve common to the plane $x+z=1$ and the surface $y=1-x^{2}$.
Since

$$
\begin{aligned}
& x+z=1 \\
& y=1-x^{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
y & =1-(1-z)^{2} \\
& =2 z-z^{2}
\end{aligned}
$$

oven this $0 \leq x \leq \sqrt{1-y}$
The last two orders of integration must be expressed as the sum of two separate integrals:
For $d x d y d z$, we have

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 z-z^{2}} \int_{0}^{1-z} f(x, y, z) d x d y d z+ \\
& \int_{0}^{1} \int_{2 z-z^{2}}^{1} \int_{0}^{\sqrt{1-y}} f(x, y, z) d x d y d z
\end{aligned}
$$

For $d x d z d y$, we must solve for z in the equatim $y=2 z-z^{2}$. We apply the quadratic formula to

$$
z^{2}-2 z+y=0 \text {, and }
$$

we obtain $z=1 \pm \sqrt{1-y}$.
In our case, $z=1-\sqrt{1-y}$. The last integral is

$$
\begin{aligned}
\int_{0}^{1} & \int_{0}^{1-\sqrt{1-y}} \int_{0}^{\sqrt{1-y}} f(x, y, z) d x d z d y+ \\
& \int_{0}^{1} \int_{1-\sqrt{1-y}}^{1} \int_{0}^{1-z} f(x, y, z) d x d z d y
\end{aligned}
$$

5. (20 points) Suppose $0<a<b$. Let

$$
\Phi(u, v)=(b \cos u+a \cos v \cos u, b \sin u+a \cos v \sin u, a \sin v)
$$

(a) Show that $\Phi(u, v)$ parametrizes the torus that is obtained by rotating about the z-axis the circle in the $x z$-plane with center $(b, 0,0)$ and radius $a<b$.
(b) Calculate the surface area of this torus.
(a) Consider the slice of the torus by the half -plane described in cylindrical coordinates as
θ_{0} fixed and $r>0$ This slice is a circle of radius a centered at

$$
(r, \theta, z)=\left(b, \theta_{0}, 0\right)
$$

We can parametrize this circle using sine and cosine

$$
r=b+a \cos v
$$

$$
z=a \sin v
$$

The v-interval $0 \leq v \leq 2 \pi$
sweeps out this circle exactly once

Converting this descuptim of the torus to rectangula coordinates yields the parametrization

$$
\begin{aligned}
& x=r \cos u=(b+a \cos v) \cos u \\
& y=r \sin u=(b+a \cos v) \sin u \\
& z=a \sin v
\end{aligned}
$$

The variable u is identical to the coordinate θ in cylindrical coordinates.
(b)

$$
\begin{aligned}
\Phi_{u}= & {[-(b+a \cos) \sin u] \vec{\tau}+} \\
& {[(b+a \cot \omega) \cos u] \vec{子} } \\
\Phi_{v}= & {[-a \cos u \sin v] \vec{\tau}+} \\
& {[-a \sin u \sin v] \vec{J}+} \\
& {\left[\begin{array}{lc}
a & \cos v
\end{array}\right] \vec{k} }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \Phi_{u} \times \Phi_{v}=[a(b+a \cos v)(\cos u)(\cos v)] \vec{r} \\
& +[a(b+a \cos v)(\sin u)(\cos v)] \vec{f} \\
& \quad+[a(b+a \cos v)(\sin v)] r_{k}
\end{aligned}
$$

and

$$
\left\|\Phi_{n} \times \Phi_{w}\right\|^{2}=a^{2}(b+a \cos v)^{2}
$$

Since $d S=\left\|\Phi_{u} \times \Phi_{a}\right\| d A$

* uv-plave

$$
\begin{aligned}
\text { surface area } & =\int_{0}^{2 \pi} \int_{0}^{2 \pi} a(b+a \cos v) d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(a b+a^{2} \cos v\right) d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi}(a b) d u d v \\
& =4 \pi^{2} a b
\end{aligned}
$$

