MA 230 January 27, 2003

Here is some background related to Exercise 15 on page 74:

Definition of a Vector Space

A (real) vector space V is a set along with two operations— “vector” addition and scalar
multipication. (The elements of V' are called “vectors” even though they may have little
to do with the classical idea of a vector.) The operation of vector addition produces a
vector u+v € V from a pair of vectors u, v € V, and the operation of scalar multipication
produces a vector cu € V from a vector u € V and a scalar (real number) ¢. These two
operations must also satisfy the following eight properties:

l.u+v=v+uforalu veV.

2. (u+v)+w=u+(v+w)forallu, v, we V.

3. There is a zero vector 0 such that u+0=uforallueV.

4. For each u € V, there is a vector —u € V' such that u+ (—u) = 0.
5. c(u+v)=cu+cvforallu, veV andall ce€R.

6. (c+du=cu+duforallueVandallc deR.

7. ¢(du) = (cd)u for all u € V and all ¢, d € R.

. lu=uforallueV.

Examples
1. R™ with the usual vector addition and scalar multiplication.

2. C[0,1] is the vector space of all continuous real-valued functions defined on the interval
[0,1] € R. The vector sum of two functions f and g is the function f + g defined by

(f +9)(x) = fz) + g(z)

for all x € [0,1]. (Note that the sum of two continuous functions is continuous.) The
scalar multiple ¢f of ¢ € R with f € C[0, 1] is the function defined by

(cf)(x) = c(f(x)).

Again you should note that c¢f defined in this manner is continuous if f is continuous.
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Property 3 requires the existence of a “zero vector”. For C[0, 1], the zero vector is the
function that is constantly zero for all x € C[0, 1].
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Just as a vector space is a generalization of R", there is a generalization of the concept of
the dot product. A generalized dot product is often called an inner product.

Definition of an Inner Product

Let V be a vector space. An inner product on V is a scalar-valued function defined on
V x V (ordered pairs of elements of V'). The inner product of two vectors u, v € V is often
denoted < u,v >, and it must satisfy the following four properties:

1. <u,v>=<v,u>forallu, veV.
2. <u+v,w>s=<uw>+<v,w>foralu, v weV.
3. <cu,v>=c<uv>=<u,cv>forallu, veVandall ceR.

4. <u,u>>0forallueV, and < u,u>=0 if and only if u = 0.

Examples
1. The usual dot product on R".

2. Given f, g € C[0,1], define

<fg>= [ fgle) de

A major portion of Exercise 15 involves verifying that < f, g > defines an inner product
on C[0,1]. The most important item is the second half of the fourth property.

Every vector space with an inner product has an associated norm (a length function):

Definition of a Norm from an Inner Product
Given an inner product < , > for the vector space V', we define the norm ||v|| of a vector

v eV by
V]| = V< Vv,v>.

Properties of a Norm
From the properties of an inner product, we observe that the associated norm satisfies four
properties:

L. ||v]]>0foralvelV.
2. ||v|| = 0 if and only if v = 0.

3. |lev]| = |e|||v]] for all c € R and all v € V.
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4. |lu+ v|| < ||ul| + ||v]| for all u, v € V (triangle inequality).

The fact that the norm satisfies the (extremely important) triangle inequality follows from
the Cauchy-Schwarz inequality.

Cauchy-Schwarz Inequality Let < , > be an inner product on the vector space V.
Then
| <u,v>[ < |[ull[lv]

forallu, veV.
We can prove the Cauchy-Schwarz inequality just by mimicking the proof for R™ on page 66.

Proof. If either u or v is the zero vector, then there is nothing to prove.
Let a, b € R. We have

0 < |lau+ bv||* =< au + bv,au + bv >
= a?|[u|]* + 2ab < u,v > +b*||v||%.

Now use a = ||v||? and b = — < u, v >. With these values of a and b, we get

0 < [ulP[Iv][* =2 <u,v > [[v[*+ <u,v > [|v]]®

= [[ull’v][*= < u,v >2 [Jv]]*,
Moving < u,v >? ||v||? to the left-hand side of the inequality, we have
<u,v>?v|* < flul v
Dividing both sides by ||v]|? yields
<u, v >< [l |v]]%,

and we obtain the Cauchy-Schwarz inequality by taking the square root of both sides. =

Now that we have the Cauchy-Schwarz inequality, we can derive the triangle inequality as
follows:
Given u, v € V., we have

lu+v|P=<u+v,ut+v>?
=[P +2<uv>+|v|*
Applying the Cauchy-Schwarz inequality, we obtain
o+ vI* < [Jal|* + 2[Jul ||V +[]v]]®

= ([[af] +[[vID*.
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We obtain the triangle inequality by taking the square root of both sides.
Given a norm on V, we obtain a distance function (a metric) by

d(u,v) = [ju—vl|.



