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Here is some background related to Exercise 15 on page 74:

Definition of a Vector Space
A (real) vector space V is a set along with two operations—“vector” addition and scalar
multipication. (The elements of V are called “vectors” even though they may have little
to do with the classical idea of a vector.) The operation of vector addition produces a
vector u + v ∈ V from a pair of vectors u, v ∈ V , and the operation of scalar multipication
produces a vector cu ∈ V from a vector u ∈ V and a scalar (real number) c. These two
operations must also satisfy the following eight properties:

1. u + v = v + u for all u, v ∈ V .

2. (u + v) + w = u + (v + w) for all u, v, w ∈ V .

3. There is a zero vector 0 such that u + 0 = u for all u ∈ V .

4. For each u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0.

5. c(u + v) = cu + cv for all u, v ∈ V and all c ∈ R.

6. (c+ d)u = cu + du for all u ∈ V and all c, d ∈ R.

7. c(du) = (cd)u for all u ∈ V and all c, d ∈ R.

8. 1u = u for all u ∈ V .

Examples

1. Rn with the usual vector addition and scalar multiplication.

2. C[0, 1] is the vector space of all continuous real-valued functions defined on the interval
[0, 1] ⊂ R. The vector sum of two functions f and g is the function f + g defined by

(f + g)(x) = f(x) + g(x)

for all x ∈ [0, 1]. (Note that the sum of two continuous functions is continuous.) The
scalar multiple cf of c ∈ R with f ∈ C[0, 1] is the function defined by

(cf)(x) = c(f(x)).

Again you should note that cf defined in this manner is continuous if f is continuous.

Property 3 requires the existence of a “zero vector”. For C[0, 1], the zero vector is the
function that is constantly zero for all x ∈ C[0, 1].
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Just as a vector space is a generalization of Rn, there is a generalization of the concept of
the dot product. A generalized dot product is often called an inner product.

Definition of an Inner Product
Let V be a vector space. An inner product on V is a scalar-valued function defined on
V × V (ordered pairs of elements of V ). The inner product of two vectors u, v ∈ V is often
denoted < u,v >, and it must satisfy the following four properties:

1. < u,v >=< v,u > for all u, v ∈ V .

2. < u + v,w >=< u,w > + < v,w > for all u, v, w ∈ V .

3. < cu,v >= c < u,v >=< u, cv > for all u, v ∈ V and all c ∈ R.

4. < u,u >≥ 0 for all u ∈ V , and < u,u >= 0 if and only if u = 0.

Examples

1. The usual dot product on Rn.

2. Given f, g ∈ C[0, 1], define

< f, g >=
∫ 1

0
f(x)g(x) dx.

A major portion of Exercise 15 involves verifying that < f, g > defines an inner product
on C[0, 1]. The most important item is the second half of the fourth property.

Every vector space with an inner product has an associated norm (a length function):

Definition of a Norm from an Inner Product
Given an inner product < , > for the vector space V , we define the norm ||v|| of a vector
v ∈ V by

||v|| =
√
< v,v >.

Properties of a Norm
From the properties of an inner product, we observe that the associated norm satisfies four
properties:

1. ||v|| ≥ 0 for all v ∈ V .

2. ||v|| = 0 if and only if v = 0.

3. ||cv|| = |c|||v|| for all c ∈ R and all v ∈ V .
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4. ||u + v|| ≤ ||u||+ ||v|| for all u, v ∈ V (triangle inequality).

The fact that the norm satisfies the (extremely important) triangle inequality follows from
the Cauchy-Schwarz inequality.

Cauchy-Schwarz Inequality Let < , > be an inner product on the vector space V .
Then

| < u,v > | ≤ ||u|| ||v||
for all u, v ∈ V .

We can prove the Cauchy-Schwarz inequality just by mimicking the proof for Rn on page 66.

Proof. If either u or v is the zero vector, then there is nothing to prove.
Let a, b ∈ R. We have

0 ≤ ||au + bv||2 =< au + bv, au + bv >

= a2||u||2 + 2ab < u,v > +b2||v||2.

Now use a = ||v||2 and b = − < u,v >. With these values of a and b, we get

0 ≤ ||u||2||v||4 − 2 < u,v >2 ||v||2+ < u,v >2 ||v||2

= ||u||2||v||4− < u,v >2 ||v||2.

Moving < u,v >2 ||v||2 to the left-hand side of the inequality, we have

< u,v >2 ||v||2 ≤ ||u||2||v||4.

Dividing both sides by ||v||2 yields

< u,v >2≤ ||u||2||v||2,

and we obtain the Cauchy-Schwarz inequality by taking the square root of both sides.

Now that we have the Cauchy-Schwarz inequality, we can derive the triangle inequality as
follows:
Given u, v ∈ V , we have

||u + v||2 = < u + v,u + v >2

= ||u||2 + 2 < u,v > +||v||2.

Applying the Cauchy-Schwarz inequality, we obtain

||u + v||2 ≤ ||u||2 + 2||u|| ||v||+ ||v||2

= (||u||+ ||v||)2.
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We obtain the triangle inequality by taking the square root of both sides.

Given a norm on V , we obtain a distance function (a metric) by

d(u,v) = ||u− v||.
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