MA 230

Here is some background related to Exercise 15 on page 74:

Definition of a Vector Space

A (real) vector space V is a set along with two operations—"vector" addition and scalar multiplication. (The elements of V are called "vectors" even though they may have little to do with the classical idea of a vector.) The operation of vector addition produces a vector $\mathbf{u} + \mathbf{v} \in V$ from a pair of vectors $\mathbf{u}, \mathbf{v} \in V$, and the operation of scalar multiplication produces a vector $c\mathbf{u} \in V$ from a vector $\mathbf{u} \in V$ and a scalar (real number) c. These two operations must also satisfy the following eight properties:

- 1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$.
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- 3. There is a zero vector **0** such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- 4. For each $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 5. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and all $c \in \mathbb{R}$.
- 6. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ for all $\mathbf{u} \in V$ and all $c, d \in \mathbb{R}$.
- 7. $c(d\mathbf{u}) = (cd)\mathbf{u}$ for all $\mathbf{u} \in V$ and all $c, d \in \mathbb{R}$.
- 8. $1\mathbf{u} = \mathbf{u}$ for all $\mathbf{u} \in V$.

Examples

- 1. \mathbb{R}^n with the usual vector addition and scalar multiplication.
- 2. C[0,1] is the vector space of all continuous real-valued functions defined on the interval $[0,1] \subset \mathbb{R}$. The vector sum of two functions f and g is the function f + g defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in [0, 1]$. (Note that the sum of two continuous functions is continuous.) The scalar multiple cf of $c \in \mathbb{R}$ with $f \in C[0, 1]$ is the function defined by

$$(cf)(x) = c(f(x))$$

Again you should note that cf defined in this manner is continuous if f is continuous. Property 3 requires the existence of a "zero vector". For C[0, 1], the zero vector is the

function that is constantly zero for all $x \in C[0, 1]$.

MA 230

Just as a vector space is a generalization of \mathbb{R}^n , there is a generalization of the concept of the dot product. A generalized dot product is often called an inner product.

Definition of an Inner Product

Let V be a vector space. An **inner product** on V is a scalar-valued function defined on $V \times V$ (ordered pairs of elements of V). The inner product of two vectors $\mathbf{u}, \mathbf{v} \in V$ is often denoted $\langle \mathbf{u}, \mathbf{v} \rangle$, and it must satisfy the following four properties:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ for all $\mathbf{u}, \mathbf{v} \in V$.
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, c\mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in V$ and all $c \in \mathbb{R}$.
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ for all $\mathbf{u} \in V$, and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Examples

- 1. The usual dot product on \mathbb{R}^n .
- 2. Given $f, g \in C[0, 1]$, define

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx.$$

A major portion of Exercise 15 involves verifying that $\langle f, g \rangle$ defines an inner product on C[0, 1]. The most important item is the second half of the fourth property.

Every vector space with an inner product has an associated norm (a length function):

Definition of a Norm from an Inner Product

Given an inner product \langle , \rangle for the vector space V, we define the **norm** $||\mathbf{v}||$ of a vector $\mathbf{v} \in V$ by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

Properties of a Norm

From the properties of an inner product, we observe that the associated norm satisfies four properties:

- 1. $||\mathbf{v}|| \ge 0$ for all $\mathbf{v} \in V$.
- 2. $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.
- 3. $||c\mathbf{v}|| = |c|||\mathbf{v}||$ for all $c \in \mathbb{R}$ and all $\mathbf{v} \in V$.

4. $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ for all $\mathbf{u}, \mathbf{v} \in V$ (triangle inequality).

The fact that the norm satisfies the (extremely important) triangle inequality follows from the Cauchy-Schwarz inequality.

Cauchy-Schwarz Inequality Let \langle , \rangle be an inner product on the vector space V. Then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$$

for all $\mathbf{u}, \mathbf{v} \in V$.

We can prove the Cauchy-Schwarz inequality just by mimicking the proof for \mathbb{R}^n on page 66.

Proof. If either **u** or **v** is the zero vector, then there is nothing to prove. Let $a, b \in \mathbb{R}$. We have

$$0 \le ||a\mathbf{u} + b\mathbf{v}||^2 = \langle a\mathbf{u} + b\mathbf{v}, a\mathbf{u} + b\mathbf{v} \rangle$$

$$= a^{2} ||\mathbf{u}||^{2} + 2ab < \mathbf{u}, \mathbf{v} > +b^{2} ||\mathbf{v}||^{2}.$$

Now use $a = ||\mathbf{v}||^2$ and $b = -\langle \mathbf{u}, \mathbf{v} \rangle$. With these values of a and b, we get

$$0 \le ||\mathbf{u}||^{2} ||\mathbf{v}||^{4} - 2 < \mathbf{u}, \mathbf{v} >^{2} ||\mathbf{v}||^{2} + < \mathbf{u}, \mathbf{v} >^{2} ||\mathbf{v}||^{2}$$
$$= ||\mathbf{u}||^{2} ||\mathbf{v}||^{4} - < \mathbf{u}, \mathbf{v} >^{2} ||\mathbf{v}||^{2}.$$

Moving $\langle \mathbf{u}, \mathbf{v} \rangle^2 ||\mathbf{v}||^2$ to the left-hand side of the inequality, we have

$$\langle \mathbf{u}, \mathbf{v} \rangle^2 ||\mathbf{v}||^2 \leq ||\mathbf{u}||^2 ||\mathbf{v}||^4.$$

Dividing both sides by $||\mathbf{v}||^2$ yields

$$< \mathbf{u}, \mathbf{v} >^2 \le ||\mathbf{u}||^2 ||\mathbf{v}||^2,$$

and we obtain the Cauchy-Schwarz inequality by taking the square root of both sides.

Now that we have the Cauchy-Schwarz inequality, we can derive the triangle inequality as follows:

Given $\mathbf{u}, \mathbf{v} \in V$, we have

$$\begin{split} ||{\bf u} + {\bf v}||^2 &= < {\bf u} + {\bf v}, {\bf u} + {\bf v} >^2 \\ &= ||{\bf u}||^2 + 2 < {\bf u}, {\bf v} > + ||{\bf v}||^2. \end{split}$$

Applying the Cauchy-Schwarz inequality, we obtain

$$||\mathbf{u} + \mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2||\mathbf{u}|| \, ||\mathbf{v}|| + ||\mathbf{v}||^2$$
$$= (||\mathbf{u}|| + ||\mathbf{v}||)^2.$$

We obtain the triangle inequality by taking the square root of both sides.

Given a norm on V, we obtain a distance function (a metric) by

 $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$