MA 231 October 27, 2009

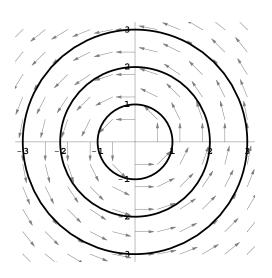
Three examples to illustrate the geometry of complex eigenvalues:

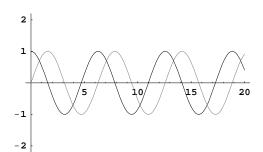
Example 1. $\frac{d\mathbf{Y}}{dt} = \mathbf{AY}$ where

$$\mathbf{A} = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right).$$

The characteristic polynomial of ${\bf A}$ is λ^2+1 , so the eigenvalues are $\lambda=\pm i$. One eigenvector associated to the eigenvalue $\lambda=i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} i \\ 1 \end{array}\right).$$





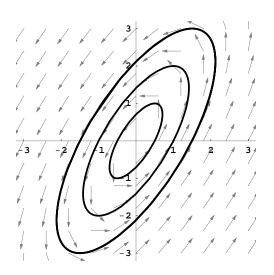
MA 231 October 27, 2009

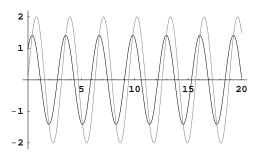
Example 2. $\frac{d\mathbf{Y}}{dt} = \mathbf{B}\mathbf{Y}$ where

$$\mathbf{B} = \left(\begin{array}{cc} 2 & -2 \\ 4 & -2 \end{array}\right).$$

The characteristic polynomial of **B** is $\lambda^2 + 4$, so the eigenvalues are $\lambda = \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\ 2 \end{array}\right).$$





MA 231 October 27, 2009

Example 3. $\frac{d\mathbf{Y}}{dt} = \mathbf{C}\mathbf{Y}$ where

$$\mathbf{C} = \left(\begin{array}{cc} 1.9 & -2 \\ 4 & -2.1 \end{array} \right).$$

The characteristic polynomial of C is $\lambda^2 + 0.2\lambda + 4.01$, so the eigenvalues are $\lambda = -0.1 \pm 2i$. One eigenvector associated to the eigenvalue $\lambda = -0.1 + 2i$ is

$$\mathbf{Y}_0 = \left(\begin{array}{c} 1+i\\ 2 \end{array}\right).$$

