1.1. Let $X=[0,1]$. Define $f: X \rightarrow X$ by $f(x)=1-x$. Describe the suspension M of $f: X \rightarrow X$ and the dynamics of the suspended flow $\phi_{t}: M \rightarrow M$.
1.2. Let f be complex conjugation of the circle S^{1}. In other words, if S^{1} is thought of as all complex numbers z such that $|z|=1$, then $f(z)=\bar{z}$. Describe the suspension M of $f: S^{1} \rightarrow S^{1}$ and the dynamics of the suspended flow $\phi_{t}: M \rightarrow M$.
1.3. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map

$$
L\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
0 & \frac{1}{2}
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

Show (using estimates) that

$$
L^{n}\binom{x_{1}}{x_{2}} \rightarrow\binom{0}{0}
$$

as $n \rightarrow \infty$.

