24. Since \(x \) is an eigenvector of \(A \),
\[
 x^T A x = x^T (\lambda x) = \lambda x^T x.
\]
Since \(z \) is real and non-negative for every complex number \(z \in \mathbb{C} \), \(x^T x \) is real. Now, since \(x^T x \) is real by Exercise 23, so is \(\lambda \).

Next, write \(x = u + iv \) for some real vectors \(u \) and \(v \), and compute
\[
 A x = A(u + iv) = A u + iA v
\]
and
\[
 \lambda x = \lambda u + i\lambda v.
\]
The real part of \(A x \) is \(A u \), because the entries in \(A \), \(u \), and \(v \) are all real. The real part of \(\lambda x \) is \(\lambda u \), because \(\lambda \) and the entries in \(u \) and \(v \) are all real. Since \(A x \) and \(\lambda x \) are equal, their real parts are equal, too. Thus, \(A u = \lambda u \), which shows that the real part of \(x \) is an eigenvector of \(A \).

26. (a) If \(\lambda = a - bi \), then
\[
 A v = \lambda v
 = (a - bi)(\text{Re} v + i\text{Im} v)
 = (a\text{Re} v + b\text{Im} v) + i(a\text{Im} v - b\text{Re} v).
\]
By Exercise 25,
\[
 A(\text{Re} v) = \text{Re} A v = a\text{Re} v + b\text{Im} v,
 A(\text{Im} v) = \text{Im} A v = -b\text{Re} v + a\text{Im} v.
\]

(b) Let \(P = [\text{Re} v \text{ Im} v] \). By (a),
\[
 A(\text{Re} v) = P \begin{pmatrix} a \\ b \end{pmatrix} \quad \text{and} \quad A(\text{Im} v) = P \begin{pmatrix} -b \\ a \end{pmatrix}.
\]
Hence,
\[
 AP = [A(\text{Re} v) \ A(\text{Im} v)]
 = \left[P \begin{pmatrix} a \\ b \end{pmatrix} \ P \begin{pmatrix} -b \\ a \end{pmatrix} \right]
 = P \begin{pmatrix} a & -b \\ b & a \end{pmatrix}
 = PC.
\]