20. Let

\[\mathbf{u} = \begin{pmatrix} -\frac{2}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 0 \end{pmatrix}. \]

Since \(\mathbf{u} \cdot \mathbf{v} = 0 \), \(\{\mathbf{u}, \mathbf{v}\} \) is an orthogonal set. However, \(\|\mathbf{u}\|^2 = \mathbf{u} \cdot \mathbf{u} = 1 \) and \(\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v} = \frac{5}{9} \neq 1 \), so \(\{\mathbf{u}, \mathbf{v}\} \) is not an orthonormal set. The vector \(\mathbf{v} \) can be normalized, with

\[\tilde{\mathbf{v}} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \frac{3}{\sqrt{5}} \mathbf{v} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, \]

so that \(\{\mathbf{u}, \tilde{\mathbf{v}}\} \) is an orthonormal set. (Note that \(\mathbf{u} \) is already a unit vector.)

26. A set of \(n \) nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set spans \(W \), it is a basis for \(W \). Since \(W \) is therefore an \(n \)-dimensional subspace of \(\mathbb{R}^n \), it must be equal to \(\mathbb{R}^n \) itself.

28. If \(U \) is an \(n \times n \) orthogonal matrix, then \(I_n = U U^{-1} = U U^T \). Since \(U \) is the transpose of \(U^T \), that is, since \((U^T)^T = U \), Theorem 6 applied to \(U^T \) says that \(U^T \) has orthogonal columns. In particular, the columns of \(U^T \) are linearly independent and hence form a basis for \(\mathbb{R}^n \), by the Invertible Matrix Theorem. That is, the rows of \(U \) form an orthonormal basis for \(\mathbb{R}^n \).