1. Let

\[A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}. \]

(a) Solve the initial value problem \(x'(t) = Ax(t) \) for \(t \geq 0 \), with \(x(0) = (1, 1) \).
(b) Classify the nature of the origin (attractor, repellor, or saddle point).
(c) Find the directions of greatest attraction, or repulsion, and sketch typical trajectories.

Solution: (a) Since \(\det(A - \lambda I_2) = \lambda^2 - 1 \), the eigenvalues of \(A \) are \(\lambda_1 = -1 \) and \(\lambda_2 = 1 \).

Bases for the corresponding two eigenspaces are for instance \(\mathbf{v}_1 = (-1, 1) \) and \(\mathbf{v}_2 = (-3, 1) \).

To find \(c_1 \) and \(c_2 \) such that \(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = x(0) \), row reduce

\[
\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & x(0) \end{bmatrix} = \begin{bmatrix} -1 & -3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}.
\]

Hence, \(c_1 = 2 \) and \(c_2 = -1 \), and the solution of the initial-value problem is given by

\[x(t) = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + (-1) \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^t. \]

(b) Since one of the eigenvalues is negative and the other one is positive, the origin is a saddle point of \(x' = Ax \).

(c) The direction of greatest attraction is the line through \(\mathbf{v}_1 \) and the origin; the direction of greatest repulsion is the line through \(\mathbf{v}_2 \) and the origin.

2. Let the vectors \(\mathbf{u} \) and \(\mathbf{v} \) be defined by

\[\mathbf{u} = \begin{pmatrix} 1 \\ -2 \\ 3 \\ -7 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} -3 \\ 5 \\ 4 \\ 0 \end{pmatrix}. \]

(a) Determine if \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal.
(b) Compute the distance \(\text{dist}(\mathbf{u}, \mathbf{v}) \) between \(\mathbf{u} \) and \(\mathbf{v} \).
(c) Find a unit vector in the direction of \(\mathbf{u} \).

Solution: (a) Since \(\mathbf{u} \cdot \mathbf{v} = 1(-3) + (-2)5 + 3(4) + (-7)0 = -1 \neq 0 \), \(\mathbf{u} \) and \(\mathbf{v} \) are not orthogonal.

(b) Since \(\mathbf{u} - \mathbf{v} = (4, -7, -1, -7) \),

\[\text{dist}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{4^2 + (-7)^2 + (-1)^2 + (-7)^2} = \sqrt{115} \approx 10.72. \]

(c) Since \(\|\mathbf{u}\| = \sqrt{1^2 + (-2)^2 + 3^2 + (-7)^2} = \sqrt{63} = 3\sqrt{7} \), a unit vector in the direction of \(\mathbf{u} \) is given by

\[\frac{1}{\|\mathbf{u}\|} \mathbf{u} = \frac{1}{3\sqrt{7}} \begin{pmatrix} 1 \\ -2 \\ 3 \\ -7 \end{pmatrix}. \]