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Abstract. One common characteristic of many classical singular perturbation problems is the
occurrence of logarithmic (switchback) terms in the corresponding asymptotic expansions. We
discuss two such problems well known to give rise to logarithmic switchback: first, Lagerstrom’s
equation, a model related to the asymptotic treatment of low Reynolds number flow from fluid
mechanics, and second, the Evans function approach to the stability of degenerate shock waves
in (scalar) reaction-diffusion equations. We show how asymptotic expansions for these two
problems can be obtained by means of methods from dynamical systems theory as well as of
the blow-up technique. We identify the structure of these expansions and demonstrate that
the occurrence of the logarithmic switchback terms therein is in fact caused by a resonance
phenomenon.

1. Introduction

A distinctive feature of asymptotic expansions in numerous singular perturbation problems is
the occurrence of logarithmic terms. The structure of these expansions is both complicated and
unexpected, as the governing equations typically give no hint of the presence of such terms.
Traditionally, logarithmic terms have been accounted for under the notion of switchback, and
resolved e.g. by the method of matched asymptotic expansions. There, the introduction of these
terms is found not to be forced by the equations themselves, but by the matching process.

Our goal is to show how such expansions can be obtained using geometric methods, thereby
establishing a connection with the classical approach. Our analysis is based on methods from
the theory of dynamical systems, in particular on invariant manifolds and normal forms, and
relies heavily on the so-called blow-up technique. Blow-up is essentially a sophisticated rescaling
which allows one to analyze the dynamics near a singularity, cf. [1]. For instance, blow-up has
been employed in [2] and [3] to give a geometric analysis of the singularly perturbed planar fold.
Apart from deriving asymptotic expansions continued beyond the fold point, they also explained
the structure of these expansions and gave an algorithm for the computation of their coefficients.

The present work is similar in spirit: here, we briefly discuss two classical singular
perturbation problems well known to entail logarithmic switchback terms, and indicate how
rigorous asymptotic expansions for these problems can be derived using geometric methods.
Moreover, we identify the source of the switchback phenomenon in that we show that the
occurrence of logarithmic terms in these expansions is caused by resonances in the respective
blown-up equations. At this point, we conjecture that similar resonance phenomena are



responsible for the occurrence of logarithmic terms in many other singular perturbation
problems, at least after reinterpretation in a dynamical systems framework.

This article is organized as follows. In Section 2, we briefly discuss logarithmic switchback
both from a classical point of view and from a geometric perspective. In Section 3, we introduce
Lagerstrom’s model equation and give a rough outline of the results published in full detail in
[4, 5]. Section 4 contains a short survey of work in progress: we consider degenerate shock
waves in (scalar) reaction-diffusion equations and indicate how Evans functions can still be
meaningfully defined in that setting using blow-up [6].

2. Logarithmic switchback

A customary description of switchback would be the following [7]: let a perturbation problem
involving a small parameter ε be given, and assume an expansion for the corresponding solution
in terms of some sequence {δj(ε)}j∈N, with δj+1(ε) = O(δj(ε)). After having computed the
expansion to some order δk(ε), however, one finds it necessary to insert intermediate terms of
the order δ∗(ε), where δ∗ = O(δk) and δk+1 = O(δ∗). To put it differently, at a certain step
in the perturbation expansion, the neglected terms appear to be only O(δk+1), whereas their
actual effect is O(δ∗).

The above characterization is subjective, of course: one made a wrong guess about which
expansion parameter to use; hence, one has to revert (“switch back”) to the original expansion
and insert additional terms therein a posteriori. If, moreover, these new terms involve logarithms
of ε, the label logarithmic switchback is used.

More specifically, consider a system of ordinary differential equations of the form

x′ = f(x, ε) with x ∈ R
n (n ∈ N) and 0 < ε � 1 (1)

now, and assume a naive expansion for the solution x(t, ε) to (1) of the form

x(t, ε) = x0(t) + εx1(t) + . . . (2)

for t fixed as ε → 0. Plugging (2) into (1) and comparing the coefficients of like powers of
ε, one expects to find a recursive sequence of differential equations for {xj(t)}j∈N. In trying
to solve these equations subject to a set of additional (boundary) constraints imposed on (1),
however, one fails. In the simplest case, one might find that already in the second step of the
expansion, the equation for x1 has no admissible solution. Hence, the assumption expressed by
(2) is misleading: in the formal expansion, one expected the correction to x0 to be strictly O(ε),
but the guess was wrong, as that correction is actually larger (O(ε ln ε), for example).

Perturbation problems in which a small parameter ε (but not ln ε) occurs in the formulation
of the problem, whereas ln ε arises in the asymptotic expansion (as εk(ln ε)`, (ln ε)−k, or even
εk(ln | ln ε|)−`), have first been encountered in the resolution of paradoxes from fluid mechanics
[8]. Logarithmic switchback, however, is tied neither to these paradoxes nor to fluid mechanics.
It is not even tied to singular perturbation problems, as pointed out in [7]: even regular
perturbation techniques may lead to logarithmic terms.

From a classical point of view, the question of switchback is connected to the behavior of
solutions to (1) for t small. The theory of linear differential equations tells us whether to expect
basic solutions which are logarithmic at t = 0 [9]. In the nonlinear case, the occurrence of
logarithms depends on the nonlinearity of the equation: clearly, logarithmic terms arise through
particular integrals of the form

∫ t ds

s
.



In fact, it is argued in [7] that such terms are not unnatural, and that they can be obtained
by continuity for certain classes of differential equations whose solutions, as well as the
corresponding expansions around a singular point, vary continuously with a parameter.

In the following, we want to give an alternative characterization of logarithmic switchback
based on the theory of dynamical systems or, more precisely, on the blow-up technique. In
particular, it will turn out that logarithmic terms occur very naturally in this setting, and are
due to resonances among certain eigenvalues associated with the blown-up equations.

Consider the extended system
y′ = g(y) (3)

obtained from (1) by appending the (trivial) equation ε′ = 0, where we have set y := (x, ε)T

and g(y) := (f(y), 0)T . Assume y∗ = 0 to be a degenerate equilibrium of (3), and let

y1 = r̄α1 ȳ1, . . . , yn+1 = r̄αn+1 ȳn+1 (4)

be a corresponding blow-up transformation by which the origin in (3) can be (partially)
desingularized; here (α1, . . . , αn+1) ∈ N

n+1. The blown-up vector field, which is induced by
the vector field in (3), is best studied by introducing charts [1, 2]. These charts, which we call
Ki, are defined by ȳi = 1 (i = 1, . . . , n + 1) in (4).

Remark 1 For any object � in the original setting, we denote by � the corresponding blown-up
object; in chart Ki, the same object will appear as �i in the following.

The chart Kn+1 corresponding to ȳn+1 (= ε̄) = 1 is frequently referred to as the rescaling chart.
It plays a crucial role in most blow-up analyses; however, the equations in Kn+1 will contain
ε = r

αn+1

n+1 only as a parameter, whereas ε has to appear as a dynamic variable for switchback
terms to occur, see below.

Hence, fix a value of i ∈ {1, . . . , n} now, and let Ki denote the corresponding (phase-
directional) chart in (4), with ȳi = 1. Without loss of generality, we assume that the origin is
still an equilibrium in Ki. Then, the resulting equations in Ki, which are obtained by plugging
(4) into (3) and expanding, can be written as

y′
i = Dgi(0)yi + O(y2

i ) (5)

after desingularization. The desingularization, which corresponds to introducing a rescaled time
ti via dti = rα

i dt (α ∈ N), is necessary to obtain non-trivial dynamics on {ri = 0}.
For the sake of exposition, assume Dgi(0) = diag(λ1, . . . , λn+1) in (5), where {λj}

n+1
j=1 are

distinct real numbers. Our goal is to show that if the eigenvalues of Dgi(0) are in resonance,
i.e. if for some k ∈ {1, . . . , n + 1},

λk =
n+1
∑

j=1

αjλj with {αj}
n+1
j=1 ∈ N

n+1 and
n+1
∑

j=1

αj ≥ 2, (6)

this resonance will give rise to logarithmic terms in the corresponding expansions for yi. To
keep the notation compact, we will suppress the subscript i throughout the remainder of this
section.

Note that by assumption, yj ∼ βje
λjt (j = 1, . . . , n+1) in K, where {βj}

n+1
j=1 ∈ R

n+1. Hence,

(5) and (6) imply that to leading order,

y′k = λkyk + βe
Pn+1

j=1
αjλjt = λkyk + βeλkt with β =

n+1
∏

j=1

β
αj

j , (7)



where by standard normal form theory we may assume that all non-resonant terms have been
removed by a sequence of near-identity transformations [10]. A particular solution to (7) is given
by

yk = βteλkt. (8)

Finally, to express yk in in terms of ε, we recall yn+1 = ε and ε ∼ βn+1e
λn+1t. Therefore,

plugging t ∼ 1
λn+1

ln ε
βn+1

into (8), we find that teλkt gives rise to ε ln ε in yk after elimination of

t. Similarly, higher powers of teλkt in (7) would give rise to higher-order terms in ε ln ε.
Thus, from a dynamical systems point of view, logarithmic switchback can in principle be

expected in problems in which the source of a singularity is tied to degenerate equilibria which
are amenable to a blow-up analysis and which display resonance in one of the phase-directional
charts after blow-up. In particular, the above argument shows that the powers of ε and ln ε

occurring in the resulting asymptotic expansions (after blow-down) are determined by the values
of the resonant eigenvalues and their respective ratios, see [3, 5, 6] for examples.

3. Lagerstrom’s model equation

A classical singular perturbation problem from fluid mechanics occurs in the asymptotic
treatment of viscous flow past a solid at low Reynolds number, see e.g. [8]. Though attempts
date back to [11], the conceptual structure of the problem was finally resolved in [12] and [13].
To illustrate the ideas and techniques used by Kaplun, Lagerstrom [9] proposed an analytically
rather simple model problem which, in its simplest formulation, is given by

u′′ +
n − 1

ξ
u′ + εuu′ = 0 (9)

u(ξ = 1) = 0, u(ξ = ∞) = 1. (10)

Here n ∈ N, 0 ≤ ε � 1 (where ε is the analog of the Reynolds number), 1 ≤ ξ ≤ ∞, and the
prime denotes differentiation with respect to ξ. Lagerstrom’s analysis of (9),(10) is based on the
method of matched asymptotic expansions. There, it turns out that similar difficulties as in the
original problem arise (Stokes’ paradox, Whitehead’s paradox).

In the following, we will only consider the physically relevant case n = 3 in (9). It is well
known that for n = 3, an expansion for vε := u′|ξ=1 is given by [9]

vε = 1 − ε ln ε − (γ + 1)ε + O(ε2); (11)

here γ ≈ 0.5772 is Euler’s constant. Incidentally, note that vε corresponds to the drag, a
quantity of interest in the original fluid dynamical problem. For more background information
and further references on Lagerstrom’s model equation, we refer to [4].

3.1. Our approach
Keeping in mind that n = 3 now, we rewrite (9),(10) as a dynamical system in extended phase
space by replacing ξ ∈ [1,∞) by η := ξ−1 ∈ (0, 1], setting u′ = v, and appending the (trivial)
equation ε′ = 0:

u′ = v

v′ = −2ηv − εuv

η′ = −η2

ε′ = 0

(12)

u(ξ = 1) = 0, η(ξ = 1) = 1, u(ξ = ∞) = 1. (13)

For ε > 0 fixed, let Vε be defined by Vε := {(0, v, 1) | v ∈ [v, v]}, where 0 ≤ v < v < ∞, and let
the point Q be given by Q = (1, 0, 0). Note that Vε and Q correspond to the inner and outer
boundary conditions in (13), respectively.
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Figure 1. Geometry of system (12) for ε > 0 fixed.

The equilibria of (12) are located on the line ` := {(u, 0, 0) |u ∈ R
+}, with ε ∈ [0, ε0] and

ε0 > 0 small; obviously, Q ∈ `. Linearization at ` shows 0 to be a triple eigenvalue even for
ε 6= 0. Still, the existence of one strongly stable direction Wss

ε can be exploited to define a
two-dimensional stable manifold Ws

ε for Q. The situation is illustrated in Figure 1.

Remark 2 Although one cannot deduce the existence of Ws
0 from standard invariant manifold

theory, it is shown in [4] that Ws
ε can still be defined down to ε = 0 by means of blow-up.

The (polar) blow-up transformation introduced in [4] to analyze the dynamics of (12) near `

is given by
u = ū, v = r̄v̄, η = r̄η̄, ε = r̄ε̄.

Apart from the rescaling chart K2 corresponding to ε̄ = 1, one requires an additional chart K1

defined by η̄ = 1 here.
After transformation to K1 (and desingularization by rescaling ξ with a factor of r1), the

equations in (12) become
u′

1 = v1

v′1 = −v1 − ε1u1v1

r′1 = −r1

ε′1 = ε1.

(14)

The equilibria of (14) lie in `1 := {(u1, 0, 0, 0) |u1 ∈ R
+}; a simple computation shows that the

corresponding eigenvalues are given by −1 (double), 0, and 1. Since 0 = 1 + (−1), there is a
resonance of order 2 among these eigenvalues.
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Figure 2. Expansions for vε in chart K1 (n = 3).

3.2. Rigorous asymptotic expansions
It is proved in [5] that v1 = v1(u1, ε1) can be expanded as

v1(u1, ε1) =

∞
∑

i,j=0

j≤i

aij(u1)ε
i
1(ln ε1)

j , (15)

with unique and smooth coefficient functions aij(u1), see Figure 2. In fact, the complicated
structure of (15) (and hence of (11)) is due to the passage past `1 in K1. Heuristically, this can
be understood as follows: by introducing the new variable ṽ1 = eξ1v1 in (14) and integrating,
one obtains

u1(ξ1) = u10
+

∫ ξ1

0
e−ηṽ1(η) dη

ṽ1(ξ1) = v10
− ε10

∫ ξ1

0
eηu1(η)ṽ1(η) dη,

(16)

where we have used ε1 = ε10
eξ1 and u10

, v10
, and ε10

are constants. As it turns out, (16) defines
a contraction operator for u1 and ṽ1 in L∞[0, ln ε1

ε10

]. Hence, a Picard iteration scheme can be

applied, with the starting point given by (u
(0)
1 , ṽ

(0)
1 ) = (u10

, v10
):

u
(1)
1 = u10

+ v10
(1 − e−ξ1) (17)

ṽ
(1)
1 = v10

+ ε10
u10

v10
(1 − e−ξ1) (18)

u
(2)
1 = u

(1)
1 + ε10

u10
v10

(1 − ξ1 − e−ξ1) (19)

...



Now, since ξ1 = ln ε1

ε10

, we find that there is a logarithmic switchback term in ε1 when (19) is

rewritten as a function of ε1. Similarly, the products of powers of ξ1 and eξ1 which occur for
higher iterates in (16) will give rise to products of powers of ln ε1 and ε1.

Remark 3 Let Π : Σin
1 → Σout

1 denote the (local) transition map for (14), where Σin
1 and Σout

1

are appropriately defined sections in K1. Then, the above computation gives the leading order
behavior of Π.

Remark 4 The case n = 2 is computationally more involved, see [5] for details.

4. Evans functions for characteristic shock waves

In our second example, we study the stability of viscous shock waves in the family of reaction-
diffusion equations defined by

ut + f(u)x = uxx. (20)

Here (t, x) ∈ R
+ × R, u(t, x) ∈ R, and f : U → R is assumed to be smooth in U ⊂ R, with U

convex and open. Moreover, we require that f(0) = 0, f(1) = 0, and f(u) > 0 for u ∈ (0, 1).

Remark 5 Although we will restrict ourselves to the scalar case in the following, the results of
this section can be generalized to systems with u(t, x) ∈ R

d for d ∈ N, see the forthcoming article
[6].

Let φ(x) be a stationary shock wave for (20), with

lim
x→−∞

φ(x) = 0 and lim
x→∞

φ(x) = 1.

Without loss of generality, we assume f ′(1) < 0 and f ′(0) = 0 in (20), which corresponds to a
characteristic shock [14] with only algebraic decay of φ at x = −∞. Therefore, we may write

f(u) =
1

2
u2 +

α

3
u3 + O(u4)

with some α < 0, possibly up to a rescaling of u. The requirement that α 6= 0 is known as the
genuine nonlinearity assumption.

Spectral stability of φ is given if the linearization of (20) around φ, which is

Lp := pxx − (df(φ) p)x = λp with λ ∈ C, (21)

has no eigenvalue λ 6= 0 in {<λ ≥ 0}; here, we have set u(t, x) = φ(x)+p(t, x). To investigate the
stability properties of φ, one commonly introduces a function E(λ), called the Evans function,
such that zeros of E correspond to eigenvalues of L. In contrast to the well-understood non-
characteristic case, however, E is not analytic, but has a branch point at λ = 0. Details and
further references can e.g. be found in [15, 16].

4.1. Our approach
As we are interested in shock wave solutions for (20), we introduce ξ = x − ct in (20) and
integrate once to obtain u′ = f(u). Moreover, we rewrite (21) as

p′ = df(u) p + λq

q′ = p.



Here, the prime denotes differentiation with respect to ξ, and we have shifted to a moving frame
in which c equals zero. Introducing the complex projective coordinate z := p

q
∈ P(C), setting

λ = γ2 ∈ C, and appending the (trivial) equation γ ′ = 0, we obtain

u′ = f(u)
z′ = df(u) z − z2 + γ2

γ′ = 0.
(22)

There are two lines `± of non-hyperbolic equilibria for (22), where `± = {(0,±γ, γ) | γ ∈ C}. The
point (0, 0, 0) corresponding to γ (= λ) = 0 is particularly degenerate, with 0 a triple eigenvalue.

To desingularize the origin in (22), we introduce the blow-up transformation

u = r̄ū, z = r̄z̄, γ = r̄γ̄,

where we assume z̄, γ̄ := ρ̄eiϕ ∈ C. Two charts (K1 and K2) are required here, defined by ū = 1
and ρ̄ (= |γ̄|) = 1.

The desingularized equations in chart K1 are given by

r′1 = (1
2 + α

3 r1 + O(r2
1))r1

z′1 = −(1
2 + α

3 r1 + O(r2
1))z1 + (1 + αr1 + O(r2

1))z1 − z2
1 + γ2

1

γ′
1 = −(1

2 + α
3 r1 + O(r2

1))γ1.

(23)

While (0, 0, 0) is still an equilibrium for (23), there is now an additional equilibrium at
P1 := (0, 1

2 , 0). The corresponding eigenvalues are − 1
2 and 1

2 (double) for the origin and − 1
2

(double) and 1
2 for P1, respectively. Therefore, the analysis in K1 is complicated by the fact

that both these equilibria are resonant.

4.2. The Dulac map
To analyze the dynamics of (23) about P1 in more detail, we define z̃1 = z1 −

1
2 and then divide

out the common factor 1
2 + α

3 r1 + O(r2
1) from the resulting equations:

r′1 = r1

z̃′1 = −z̃1 +
α(z̃1 + 1

3)r1 − z̃2
1 + γ2

1 + O(r2
1)

1
2 + α

3 r1 + O(r2
1)

γ′
1 = −γ1.

(24)

We introduce two sections Σin
1 and Σout

1 in K1, as shown in Figure 3. An expansion for the (local)
transition map Π : Σin

1 → Σout
1 , (rout

1 , z̃out
1 , γout

1 ) = Π(rin
1 , z̃in

1 , γin
1 ), for (24) can be obtained from

normal form theory [10], which gives

z̃out = rout
1 z̃out

1 =
γ

γ∗
1

z̃in
1 +

8α

3
γ2 log γ + O(|γ|2, |γ|3| log γ|2, |γ|3| log γ|) (25)

for some 0 6= γ∗
1 ∈ C with |γ∗

1 | small. Again, one finds that the logarithmic terms in (25) are
caused by resonance, as the eigenvalues of (24) are given by −1 and 1, cf. [6] for details. Note
that the case α = 0 has been excluded by definition, implying that the γ2 log γ-term in (25) does
not vanish.

Remark 6 By appropriately defining an Evans function E for (22), see [17], one obtains from
(25) that

d

dγ
E(γ, log γ)

∣

∣

∣

γ=0
=

dz̃out

dγ
(0) 6= 0;

therefore, γ = 0 is a simple root of E, and E cannot be analytic for γ (and hence λ) close to
zero.
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Figure 3. The Dulac map in chart K1.
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