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Abstract. We study traveling wave solutions for the class of scalar reaction-diffusion equations

∂u

∂t
=

∂2u

∂x2
+ fm(u),

where the family of potential functions {fm} is given by fm(u) = 2um(1 − u). For each m ≥ 1
real, there is a critical wave speed ccrit(m) that separates waves of exponential structure from those
which decay only algebraically. We derive a rigorous asymptotic expansion for ccrit(m) in the limit
as m → ∞. This expansion also seems to provide a useful approximation to ccrit(m) over a wide
range of m-values. Moreover, we prove that ccrit(m) is C∞-smooth as a function of m−1. Our
analysis relies on geometric singular perturbation theory, as well as on the blow-up technique, and
confirms the results obtained by means of asymptotic methods in [D.J. Needham and A.N. Barnes,
Nonlinearity, 12(1):41-58, 1999] and in [T.P. Witelski, K. Ono, and T.J. Kaper, Appl. Math. Lett.,
14(1):65-73, 2001].

1. Introduction

We consider traveling wave solutions for the class of scalar bistable reaction-diffusion equations
given by

∂u

∂t
=
∂2u

∂x2
+ fm(u),(1)

where the family of potential functions {fm} is defined via fm(u) = 2um(1 − u), with m ≥ 1 real.
The restriction to m ≥ 1 is necessary, since it has been shown in [17, 27] that no traveling waves
for (1) can exist when m < 1, see also [21].

The class of problems in (1) includes the classical Fisher-Kolmogorov-Petrowskii-Piscounov
(FKPP) equation with quadratic nonlinearity (m = 1) [10, 12], as well as a bistable equation
with degenerate cubic nonlinearity (m = 2) [25]. In particular, it has been studied in [25] as a
bridge between the classical FKPP equation and the family of nondegenerate bistable cubic equa-
tions with potential f(u) = u(u−a)(1−u), a ∈ (0, 1

2). In the former, u = 0 is an unstable state (in
the PDE sense), whereas in the latter, it is a stable state of the PDE. The motivation for studying
(1) in [25] was that it is a family of equations for which the state u = 0 is neutrally stable and, hence,
that it lies “in between” the two classical cases. Interesting mathematical phenomena concerning
the stability of wave fronts were reported in [25], see also [18, 15]. We hope that the existence
analysis presented here will be useful for further investigating the stability of these solutions.

Let the traveling wave solutions to (1) be denoted by u(x, t) = U(ξ), with ξ = x−ct the traveling
wave variable and c the wave speed. Moreover, let

lim
ξ→∞

U(ξ) = 0 and lim
ξ→−∞

U(ξ) = 1.
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It is well-known that for each m ≥ 1, there is a critical wave speed ccrit(m) > 0 such that traveling
wave solutions exist for c ≥ ccrit(m) in (1) [2, 1]. The speed ccrit(m) is critical in the sense that
waves decay exponentially ahead of the wave front (i.e., as ξ → ∞) when c = ccrit(m), whereas the
decay is merely algebraic in ξ for c > ccrit(m).

The family of equations in (1) has been studied in the regimes where m is near 1 or 2. Perturba-
tion analyses off these classical cases have been carried out for m = 1+ε using matched asymptotic
expansions [17] and geometric singular perturbation theory [21], showing that the limit as ε→ 0 is
non-uniform, with the critical wave speed given by

ccrit(1 + ε) = 2
√

2 −
√

2Ω0ε
2

3 + O(ε) for ε ∈ (0, ε0).

Here, ε0 > 0 is small, and Ω0 is the first real zero of the Airy function. The corresponding result
for m ≈ 2 is

ccrit(2 + ε) = 1 − 13

24
ε+ O(ε2) for ε ∈ (−ε0, ε0),

see also [27].
In the following, we study (3) in the limit of m → ∞. This problem was considered in [27]

via the method of matched asymptotic expansions; independently, it was analyzed in [18] using a
slightly different approach. In particular, it has been shown that ccrit(m) ∼ 2

m
to leading order for

the critical wave speed ccrit that separates solutions in (1) which decay exponentially from those
for which the decay is merely algebraic.

Here, the aim is to derive a rigorous asymptotic expansion for ccrit(m) in the large-m limit, and
thereby to justify the matched asymptotic analysis of [27] and [18] within a geometric framework.
At the same time, we will also obtain an alternative proof for the existence of the corresponding
traveling wave solutions in (1). Two additional factors motivated the analysis of the large-m limit.
First, both the asymptotic analysis and the numerical results in [27, 18] suggest that ccrit(m)
decreases monotonically to zero as m→ ∞, which is confirmed in Theorem 1.1 below. Second, the
expansion for ccrit(m) as m→ ∞ agrees well with the numerics over a wide range of m-values, even
down to m = 2, see [27, Figure 3(a)]. Hence, the results obtained in the large-m regime seem to
provide a useful approximation to ccrit(m) also for finite values of m.

The following is the principal result of this work:

Theorem 1.1. There exists a function ccrit(m) and an m0 ∈ R sufficiently large such that for
m ≥ m0, c = ccrit(m) is the critical wave speed for (1). Moreover, ccrit(m) is C∞-smooth in m−1,
and there holds

ccrit(m) =
2

m
+

σ

m2
+ O(m−3),(2)

where σ is defined as

σ = lim
ω0→∞

∫ ω0

0

[
ω2e−ω

√
1 − (1 + ω)e−ω

− ω3

2
e−ω

]
dω ≈ −0.3119.

The main technique we use to prove Theorem 1.1 is the global blow-up technique, also known as
geometric desingularization of families of vector fields. To the best of our knowledge, this method
was first used in studying the limit cycles near a cuspidal loop in [7]. The blow-up technique has
since been successfully applied in the study of numerous bifurcation problems. It has for instance
been introduced in [5] as an extension of the more classical geometric singular perturbation theory
[9, 11] to problems in which normal hyperbolicity is lost. For further examples, we refer the reader
to [3, 6, 4, 13, 14, 22].
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This article is organized as follows. In Section 2, we define the geometric framework for the
analysis of (3). In Section 3, we introduce the blow-up transformation required for the desingular-
ization of the corresponding “inner problem.” In Section 4, we combine the results of the previous
sections into the proof of Theorem 1.1.

2. A Geometric Analysis of (3)

We will prove Theorem 1.1 by studying the corresponding global bifurcation problem in the
traveling wave ODE associated to (1). Recall that ξ = x − ct denotes the traveling wave variable
and that U(ξ) = u(x, t). Then, traveling waves of velocity c are given by heteroclinic trajectories
for the nonlinear second-order equation

U ′′ + cU ′ + 2Um(1 − U) = 0(3)

that connect the two rest states at U = 1 and U = 0; here, the prime denotes differentiation with
respect to ξ.

For a geometric analysis of (3), it is convenient to first recast the equation in Liénard form, i.e.,
to consider the autonomous first-order system

U ′ = V − cU,

V ′ = −2Um(1 − U).
(4)

The equilibria of (4) are located at Q+ : (U, V ) = (0, 0) and Q− : (U, V ) = (1, c). Traveling wave
solutions of (1) correspond to heteroclinic connections between these two points in (4), with

lim
ξ→±∞

(U, V )(ξ) = Q±.

We only consider m > 1 and c ≥ 0; then, a simple calculation shows

Lemma 2.1. The point Q− is a hyperbolic saddle for any c ≥ 0, with eigenvalues and the corre-
sponding eigendirections given by

− c
2
± 1

2

√
c2 + 8 and

(
− c

4
± 1

4

√
c2 + 8, 1

)T

,

respectively. The point Q+ is a saddle-node for c > 0, with eigenvalues −c and 0 and eigendirections
(1, 0)T and (1, c)T . For c = 0, zero is a double eigenvalue, with one eigendirection (1, 0)T (and the
generalized eigendirection (0, 1)T ).

We will be interested in the unstable manifold Wu(Q−) of Q− and in those values of c for which it
connects to the strong stable manifold Ws(Q+) of Q+. Geometrically, the dependence of solutions
to (4) on c can be understood as follows. Whenever c > ccrit(m), Wu(Q−) approaches Q+ on a
center manifold, which is locally tangent to the span of (1, 0)T . Hence, solutions decay algebraically
as ξ → ∞. Precisely for c = ccrit(m), Wu(Q−) coincides with Ws(Q+); thus, solutions approach
Q+ tangent to (1, c)T and decay exponentially as ξ → ∞. For c < ccrit(m), no heteroclinic solutions
to (4) exist, as Wu(Q−) does not enter the basin of attraction of Q+. Therefore, for m > 1, a global
bifurcation occurs at c = ccrit(m) due to the switchover from one type of connection to another in
(4).

Remark 1. For m = 1, ccrit is determined by a local transition condition, with Q+ changing from
being a stable node via a degenerate node to a stable spiral.
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2.1. A preliminary rescaling for (4). We define the new parameter ε = m−1 and hence consider
the limit of ε→ 0 in the following. Given that the function fm(U) assumes its maximum at U = m

m+1
and that

fm( m
m+1) = 2

( m

m+ 1

)m 1

m+ 1
∼ 2

e
ε

for m sufficiently large, we rescale V via V = εṼ . Also, we know formally and numerically that
ccrit = O(1) as ε→ 0 [18, 27]; therefore, we write c = εc̃.

Under these rescalings, the equations in (4) become

U̇ = Ṽ − c̃U,(5a)

˙̃
V = − 2

ε2
U

1

ε (1 − U);(5b)

here, the overdot denotes differentiation with respect to the rescaled traveling wave coordinate

ξ̃ = εξ.(6)

We investigate (5) in the limit as ε → 0. More precisely, we will decompose the analysis of
(5) into two separate problems, the “outer problem” and the “inner problem,” which are defined
for 0 ≤ U < 1 and for U ≈ 1, respectively. This decomposition is naturally suggested when one

introduces U
1

ε = e
1

ε
ln U in (5b), since this term is exponentially small if U < 1. The desired

expansion for ccrit(ε) will then be obtained by constructing a solution which is uniformly valid on
the entire domain [0, 1].

2.2. The “outer problem”. For U ∈ [0, 1), the potential fm(U) is essentially zero for m large.
More specifically, for U ∈ [0, U0] with U0 < 1 constant, the right-hand side in (5b) is exponentially
small in ε. Therefore, we find that on this “outer domain” the dynamics are governed to leading
order by the system

U̇ = Ṽ − c̃U,(7a)

˙̃
V = 0,(7b)

which is labeled the “outer problem” or the reduced slow system. For system (7), the invariant

manifold defined by S0 :=
{
(U, Ṽ )

∣∣ Ṽ = c̃U, U ∈ [0, U0]
}

is normally hyperbolic; in fact, this
manifold is normally attracting, since c̃ > 0 by assumption. The corresponding fast foliation F0

consists of axis-parallel fibers {Ṽ = Ṽ0}. The situation is illustrated in Figure 1(a).
By standard persistence theory [8, 9], it follows that for ε > 0 sufficiently small, both S0 and F0

will persist; we will denote the corresponding slow manifold and its associated foliation by Sε and
Fε, respectively. Since the only ε-dependence in (5a) is encoded in c̃, the slow manifold Sε is to all

orders given by the straight line of slope c̃ in (U, Ṽ )-space,

Sε =
{
(U, Ṽ )

∣∣ Ṽ = c̃U, U ∈ [0, U0]
}
,

where c̃ = c̃(ε) is ε-dependent now. Similarly, given (5b), we see that the fibers of Fε will be

exponentially close (in ε) to the lines {Ṽ = Ṽ0}, with Ṽ0 constant.

The fiber Γ+ : {Ṽ = 0}, i.e., the U -axis, will be of particular interest. It gives, to leading order,

the strong stable manifold Ws(Q̃+) of Q̃+, where Q̃+ denotes the origin which lies on Sε for any
value of ε.

4



U0 1

S0 : {Ṽ = c̃U}

Q̃+

Q̃−

Γ
+

Ṽ

U

(a) The “outer problem” (7).

W01Q̃−

S0 : {Z = c̃W}

Q̃+

Γ
−

Z

W

(b) The “inner problem” (10).

Figure 1. The geometry for ε = 0.

2.3. The “inner problem”. For U ≈ 1, the potential fm(U) gives a finite contribution even
as m → ∞. Moreover, in a neighborhood of U = 1 (referred to as an “inner region”) fm varies
rapidly, which signals the existence of a boundary layer there. More precisely, close to the point

Q̃− : (U, Ṽ ) = (1, c̃), the right-hand side in (5b) is significant in the limit as ε → 0, and there is a
rapid transition for ε positive, but small.

To analyze the dynamics of (5) in the boundary layer near U = 1, we first introduce the new

variables W = 1 − U and Z = −(Ṽ − c̃) in (5):

Ẇ = Z − c̃W,(8a)

Ż =
2

ε2
(1 −W )

1

εW.(8b)

Hence, the point Q̃− has been moved to the origin in the new (W,Z)-coordinates, while the critical
manifold S0 is now given by {Z = c̃W}, and is still a line of slope c̃.

Next, we write (1 −W )
1

ε = e
1

ε
ln (1−W ) and expand the logarithm as

ln (1 −W ) = −
∞∑

j=1

W j

j
,(9)

since we are interested in W small. In sum, we have obtained the system

Ẇ = Z − c̃W,(10a)

Ż =
2

ε2
W e−

W
ε

(1+O(W )).(10b)

Even though the second component in (10b) is not defined at ε = 0, we will show in Section 3 that
the corresponding limiting dynamics (the “inner problem” for (4)) can be obtained by geometric
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desingularization (blow-up) [3]. In particular, the inner limit of (10b) as (W, ε) → (0, 0) is non-
uniform. Heuristically, the limiting dynamics for ε→ 0 should be described by the singular orbit

Γ− :=
{
(0, Z)

∣∣Z ∈ [0, c̃]
}
∪

{
(W, c̃)

∣∣W ∈ [0,W0]
}
,(11)

where W0 = 1 − U0 (with U0 defined as above). The orbit Γ− consists of that portion of the
Z-axis which to lowest order describes the boundary layer at W = 0, as well as of a segment of

{Z = c̃} which corresponds to the fiber {Ṽ = 0} in the “outer” coordinates, see Figure 1(b). This
intuition will be made rigorous using geometric desingularization to analyze the dynamics of (10)
in a neighborhood of the Z-axis.

3. The blow-up transformation for (10)

To desingularize the dynamics of (10) close to the Z-axis, we define the cylindrical blow-up
transformation

W = r̄w̄, Z = z̄, ε = r̄ε̄,(12)

where (w̄, ε̄) ∈ S
1
+ =

{
(w̄, ε̄)

∣∣ w̄2 + ε̄2 = 1, w̄, ε̄ ≥ 0
}
, z̄ ∈ [0, z0], and r̄ ∈ [0, r0].

Remark 2. The central idea underlying the blow-up technique is to rescale both phase variables
and parameters in a manner that transforms a non-hyperbolic situation into a hyperbolic one, with
fixed points (respectively lines of non-isolated fixed points) typically being blown-up into spheres
(respectively cylinders). Mathematically, an n-dimensional equation depending on p parameters is
transformed into an (n+ 1)-dimensional equation which depends on p− 1 parameters. In general,
if there is a lack of normal hyperbolicity along a q-dimensional submanifold W with q < n, then
W can be represented in local coordinates as R

q × {0} ⊂ R
q × R

n−q, and we can identify the
parameter space with R

p. During the blow-up procedure, one first writes the parameter λ as
(λ1, . . . , λp) = (εi1 λ̄1, . . . , ε

ip λ̄p) with (λ̄1, . . . , λ̄p) ∈ S
p−1, for “well-chosen” powers i1, . . . , ip ∈ N.

(Here, S
p−1 denotes the (p − 1)-sphere in R

p.) Then, one adds ε as an additional variable to
(x1, . . . , xn) ∈ R

n, and one replaces R
q×{0} ⊂ R

q×R
n−q+1 by R

q×S
n−q. For example, {0} ⊂ R

n+1

would be replaced by a sphere S
n, while R × {0} ⊂ R × R

n would be changed into R × S
n−1. In

our case, we have n = 2 and q = 1. We refer the reader to the references cited above for more
information.

The dynamics of the blown-up vector field are best analyzed by introducing charts. We employ
two charts here, the “rescaling” chart K2 defined by ε̄ = 1 and a “phase-directional” chart K1 with
w̄ = 1. The following lemma describes the transition between the two charts K2 and K1:

Lemma 3.1. The coordinate change κ21 : K2 → K1 is given by

r1 = r2w2, z1 = z2, and ε1 = w−1
2 .

Remark 3. Given any object �, we will denote the corresponding blown-up object by �; in charts
Ki (i = 1, 2), the same object will appear as �i.

Remark 4. In [27], the modified potential f̃m(U) = 2U(1−U)e−(m−1)(1−U) is introduced to analyze
(10) via a comparison principle. Incidentally, the modified dynamics resulting from replacing fm

by f̃m in (10) will correspond precisely to the leading-order behavior obtained after blow-up.

3.1. Dynamics in chart K2. In chart K2, (12) is given by

W = r2w2, Z = z2, ε = r2.
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Substituting this transformation into (10), we obtain

ẇ2 =
1

r2
(z2 − r2c̃w2),

ż2 =
2

r2
w2e

−w2(1+O(r2w2)),

ṙ2 = 0.

(13)

To desingularize the flow on {r2 = 0}, we multiply through the right-hand sides in (13) by a factor
of r2; this desingularization corresponds to a reparametrization of “time,” leaving the phase portrait
unchanged,

w′
2 = z2 − r2c̃w2,

z′2 = 2w2e
−w2(1+O(r2w2)),

r′2 = 0.

(14)

Here, the prime denotes differentiation with respect to the new variable ξ̃r−1
2 , which, in chart K2,

is precisely the original ξ, recall (6).

Remark 5. The fact that (13) is desingularized by multiplying the equations by a positive power
of r̄ (instead of by dividing out some positive power of r̄) reflects the nature of the singular limit
in (10). More precisely, the vector field is unbounded as ε → 0, which contrasts with the more
standard non-hyperbolic case, where desingularization is achieved by dividing out the appropriate
power of r̄.

The only finite equilibrium of (14) is the origin. This equilibrium, which we call Q̃−
2 , is a

hyperbolic saddle point for c̃ > 0 and r2 ∈ [0, r0] sufficiently small:

Lemma 3.2. For r2 ∈ [0, r0] fixed, the eigenvalues of (14) at Q̃−
2 are given by

−r2c̃
2

± 1

2

√
r22 c̃

2 + 8 and 0,

with corresponding eigendirections
(
− r2c̃

4
± 1

4

√
r22 c̃

2 + 8, 1, 0
)T

and (0, 0, 1)T ,

respectively.

Note that Q̃−
2 corresponds to the origin in (Z,W )-coordinates before blow-up and, hence, to the

original saddle point located at Q̃− : (U, Ṽ ) = (1, c̃).
For r2 = 0 in (14), we obtain the integrable system

w′
2 = z2,

z′2 = 2w2e
−w2 .

(15)

Equivalently, we can rewrite (15) as z2
dz2

dw2
= 2w2e

−w2 , which can be solved explicitly for z2 =

z2(w2). The only two solutions with z2(0) = 0 are given by z2(w2) = ±2
√

1 − (1 + w2)e−w2 . The

corresponding orbits are associated to the two eigendirections (±
√

2
2 , 1, 0)

T with eigenvalues ±
√

2,

respectively. To lowest order, they give the stable and unstable manifolds W s
2(Q̃−

2 ) and Wu
2 (Q̃−

2 )

of Q̃−
2 . Note that for w2 → ∞, z2 → ±2.

We will be concerned with

Γ−
2 : z2(w2) = 2

√
1 − (1 + w2)e−w2(16)
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2

Γ
−

2

Σ
out

2

Q̃−

2

z2

w2

r2

(a) The “rescaling” chart K2.

P1

`1

Γ
+

1

Γ
−

1

Σ
out
1

Σ
in
1

ε1

r1

z1

(b) The “phase-directional” chart K1.

Figure 2. The dynamics in the two charts.

here, since it corresponds to the singular orbit Γ− before blow-up. See Figure 2(a) for a summary
of the geometry in chart K2.

Remark 6. Equations (15) correspond precisely to the leading-order “inner system” obtained in
[27] by means of asymptotic analysis.

3.2. Dynamics in chart K1. In chart K1, we have

W = r1, Z = z1, ε = r1ε1

for the blow-up transformation in (12), which implies

r′1 = r1(z1 − r1c̃),

z′1 =
2

ε21
e
− 1

ε1
(1+O(r1))

,

ε′1 = −ε1(z1 − r1c̃)

(17)

for the equations in (10) after desingularization, i.e., after multiplication by r1.
Since we assume that r1 is small, the equilibria of (17) are located on the line `1 =

{
(0, z1, 0)

∣∣ z1 ∈
[0, z0]

}
. Note that although the vector field in (17) is, at first sight, not defined for ε1 = 0, it extends

for ε1 → 0 to a C∞ vector field, since O(r1) stands for an analytic function which is strictly positive;
in fact, all of the coefficients in O(r1) are positive, see (9). Therefore, given the above analysis of
the dynamics in K2, it follows with z1 = z2 that we can restrict ourselves to |z1 − 2| ≤ α here, with
α > 0 small. We will denote the point (0, 2, 0) ∈ `1 by P1 in the following.

Lemma 3.3. The eigenvalues of (17) at P1 ∈ `1 are given by −2, 0, and 2, with corresponding
eigendirections (0, 0, 1)T , (0, 1, 0)T , and (1, 0, 0)T , respectively.
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Q
−

P

2

Γ
+

Γ
−

W
u

(Q
−

)

ε̄

w̄

z̄

r1

z1

ε1

r2

z2

w2

Figure 3. The situation in blown-up coordinates. (Here, the coordinate frames
for charts K1 and K2 only serve to recall the relevant variables, and not to set the
respective origins.)

Given (16) and Lemma 3.1, we obtain an explicit expression for the singular orbit Γ−
1 on the

blown-up locus {r1 = 0} in chart K1 via

Γ−
1 : z1(ε1) = 2

√
1 − (1 + 1

ε1
)e

− 1

ε1 ;

in particular, z1 → 2 as ε1 → 0, where z1(ε1) is an infinitely flat function at ε1 = 0 (i.e., at P1).
The geometry in chart K1 is summarized in Figure 2(b), while the global, blown-up situation is

illustrated in Figure 3.

3.3. Regularity of the transition in K1. For the proof of Theorem 1.1, we will require a
smoothness result on the transition past `1 under the flow of (17). For convenience, we introduce
two sections Σin

1 and Σout
1 , with ε1 = δ in Σin

1 and r1 = ρ in Σout
1 for δ, ρ sufficiently small and

positive. Note that both δ and ρ are constant, i.e., independent of ε. More precisely, we define

Σin
1 =

{
(εδ−1, zin

1 , δ)
∣∣ |zin

1 − 2| ≤ α
}

and Σout
1 =

{
(ρ, zout

1 , ερ−1)
∣∣ |zout

1 − 2| ≤ α
}
,(18)

with α > 0 a small constant, as before, and write Π1 : Σin
1 → Σout

1 for the corresponding transition
map, see again Figure 2(b).

Proposition 3.4. The map

Π1 :

{
Σin

1 → Σout
1 ,

(εδ−1, zin
1 , δ) 7→ (ρ, zout

1 , ερ−1)

is C∞-smooth in zin
1 , as well as in the parameters ε and c̃.
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Proof. For convenience, we simplify the equations in (17) by dividing out a factor of (z1−r1c̃) from
the right-hand sides,

r′1 = r1,(19a)

z′1 =
2

ε21(z1 − r1c̃)
e
− 1

ε1
(1+O(r1))

,(19b)

ε′1 = −ε1.(19c)

Here, the prime now denotes differentiation with respect to a rescaled variable ξ1. The equations
for r1 and ε1 are readily solved, since it follows from (19a) and (19c) as well as from rin

1 = εδ−1

and εin1 = δ that

r1 =
ε

δ
eξ1 and ε1 = δe−ξ1 .(20)

In particular, the transition “time” from Σin
1 to Σout

1 under Π1 can be obtained explicitly as Ξ1 =
− ln ε

δρ
, since εout

1 = ερ−1.

It only remains to investigate the regularity of zout
1 = zout

1 (zin
1 , ε, c̃). To that end, we introduce

the new variable z̃1 via z1 = 2 + z̃1 and then expand (2 + z̃1 − r1c̃)
−1 = 1

2(1 + O(z̃1, r1c̃)) in (19b)
to obtain

z̃′1 =
1

ε21
e
− 1

ε1
(1+O(r1))(

1 + O(z̃1, r1c̃)
)
.

We now define x1 = δ−1eξ1 and Z̃1(x1) = z̃1(ξ1). Note that x1 ∈ [δ−1, ρε−1] and hence εx1 ∈
[εδ−1, ρ] ⊂ [0, ρ]; in particular, it follows that εx1 is bounded. We obtain

dZ̃1

dx1
= x1e

−x1(1+O(εx1))
(
1 + O(Z̃1, εx1c̃)

)
,

or, equivalently,

dZ̃1

dξ̃1
= 1 + O(Z̃1, εx1c̃),(21a)

dx1

dξ̃1
=

1

x1
ex1(1+O(εx1))(21b)

for some ξ̃1. Now, it is important to note that

x1e
−x1(1+O(εx1)) ∈

[
ρ
ε
e−

ρ
ε
(1+O(ρ)), 1

δ
e−

1

δ
(1+O( ε

δ
))
]
⊂

[
0, 1

δ
e−

1

δ

]
;

here, we have used the fact that O(εx1) in (21b) stands for an analytic function which is strictly
positive, see (9). We can solve (21b) by separation of variables,

dξ̃1 = x1e
−x1(1+O(εx1))dx1 = dΨ(x1, εx1),

which gives

ξ̃1(x1) = Ψ(x1, εx1) − Ψ(δ−1, εδ−1)

if we impose ξ̃1(δ
−1) = 0. Here, Ψ is C∞-smooth due to the analyticity of the vector field in (21)

for x1 > 0. Moreover, Ψ is bounded, since

0 <
dξ̃1

dx1
< x1e

−x1 .

Therefore, we conclude that we can solve for x1 = x1(ξ̃1) in a unique manner, with x1 C∞-smooth.

In turn, since εx1 is bounded, there exists a unique solution Z̃1 = Z̃1(Z̃
in
1 , ξ̃1(x1), c̃) to (21a)

which is C∞-smooth in all its arguments as long as we restrict ourselves to ξ̃1 ∈ [0, ξ̃out
1 ], where

10



ξ̃out
1 = ξ̃1(ρε

−1) = Ψ(ρε−1, ρ) − Ψ(δ−1, εδ−1). Reverting to the original variables z1 and ξ, we find
that zout

1 = zout
1 (zin

1 , ε, c̃) is C∞-smooth in zin
1 , as well as in ε and c̃. This completes the proof. �

Remark 7. We conjecture that Π1 is “infinitely close” to the identity, since the right-hand side
in (19b), as well as all its derivatives, go to zero as ε→ 0. A proof would, however, be outside the
scope of this work.

Remark 8. Lemma 3.3 shows that the equilibrium at P1 is resonant, in the sense that the eigen-
values of the corresponding linearization are in resonance. This implies that resonant terms of
the form rk

1z
`
1ε

k
1 (k, ` ∈ N) will potentially occur in the normal form for (19b), which, in turn,

might induce logarithmic (switchback) terms [13, 23, 26, 20] in the expansion of Π1. However,
Proposition 3.4 implies that no such terms will arise in our case, as Π1 is regular in ε.

4. Proof of Theorem 1.1

The proof of our main result, Theorem 1.1, will be split up into the proofs of several subresults;
indeed, Lemma 4.1, Proposition 4.2, and Lemma 4.3 below together immediately yield Theorem 1.1.
First, we derive the leading-order behavior of c̃:

Lemma 4.1. There holds c̃ = 2 + O(1).

Proof. Recall that the analysis in chart K2 implies z2 → 2 as w2 → ∞ to lowest order on Wu(Q̃−
2 ),

see the expression for Γ−
2 in (16). Since w2 → ∞ is equivalent to ε1 → 0, cf. Lemma 3.1, and since

z2 = z1, it follows that (r1, z1, ε1) → (0, 2, 0) = P1 ∈ `1. Recalling the definition of Z = −(Ṽ − c̃), as

well as that Z = z1, we have Ṽ − c̃→ −2. Since Ws(Q̃+) is to leading order given by Γ+ : {Ṽ = 0},
we have c̃ ∼ 2, which is the desired result. �

The argument in Lemma 4.1 reflects the criticality of the wave speed ccrit(m) ∼ 2
m

corresponding

to c̃ ∼ 2. On Wu(Q̃−), there holds Z → 2 in the limit as ε → 0, which implies Ṽ → −2 + c̃.

Hence, for c̃ . 2 in (5), Wu(Q̃−) is to leading order asymptotic to {Ṽ = Ṽ0} for some Ṽ0 < 0;

therefore, solutions on Wu(Q̃−) leave the domain on which U ≥ 0, and we do not study them

further. Conversely, for c & 2, Wu(Q̃−) asymptotes to a fiber with Ṽ0 > 0, and is exponentially
attracted to Sε. On Sε, the slow flow is given by

U̇ = −1

c̃

2

ε2
U

1

ε (1 − U) < 0,

see (5), i.e., it is exponentially slow in ε and is directed towards Q̃+. Therefore, there exists a

connection between Q̃− and Q̃+, and the decay rate of the corresponding traveling wave to zero
will be algebraic, since the approach is along a center manifold. Both situations are illustrated in
Figure 4.

Next, we show that ccrit depends on ε in a C∞-manner:

Proposition 4.2. For ε ≥ 0 but sufficiently small, there exists a function c̃ = c̃(ε) which is
C∞-smooth in ε such that ccrit(ε) = εc̃(ε) for the critical wave speed ccrit in (4).

Proof. Define the section Σout
2 =

{
(δ−1, zout

2 , ε)
∣∣ |zout

2 − 2| ≤ α
}
, and note that κ21(Σ

out
2 ) = Σin

1 , see

(18). Since the unstable manifold Wu
2 (Q̃−

2 ) of Q̃−
2 is analytic in (w2, z2, c̃, r2), its intersection with

Σout
2 can be written as the graph of an analytic function,

zout
2 = zout

2 (δ−1, c̃, r2) = ϕout
2 (c̃, r2);(22)

recall that ε = r2 in K2, cf. Lemma 3.1. Therefore, and since z2 = z1, it follows that in chart
K1, we can represent (22) by zin

1 = ϕin
1 (c̃, ε) in Σin

1 , with ϕin
1 ≡ ϕout

2 . The graph of ϕin
1 , in turn, is

11



Q̃+

Q̃−

S0

Γ
+

Γ
−

U0 1

Ṽ

U

(a) The geometry for c̃ . 2.

U0 1

Q̃−

Q̃+

S0

Γ
+

Γ
−

U

Ṽ

(b) The geometry for c̃ & 2.

Figure 4. The criticality of c̃ ∼ 2.

mapped, under the C∞ mapping Π1, to the graph of a C∞-smooth function in Σout
1 ,

zout
1 = zout

1 (ρ, c̃, ερ−1) = ϕout
1 (c̃, ε),(23)

see Proposition 3.4. Hence, in sum, (23) represents the intersection of κ21(Wu
2 (Q̃−

2 )) with Σout
1 .

Moreover, since (14) does not depend on c̃ when r2(= ε) = 0, it follows that ∂
∂c̃
ϕout

1 (2, 0) = 0.

Next, in Σout
1 , we can also represent the intersection of Ws(Q̃+) as the graph of a C∞-smooth

function,

zout
1 = ψout

1 (c̃, ε).

Furthermore, it follows from (5) that ∂
∂c̃
ψout

1 (2, 0) = 1.
Finally, combining the two results from above, we see that the function c̃(ε) is determined by

the implicit equation

D(c̃, ε) := ϕout
1 (c̃, ε) − ψout

1 (c̃, ε) = 0.

In addition, the above analysis shows that

D(2, 0) = 0 and
∂D
∂c̃

(2, 0) = −1 6= 0.

Therefore, the result follows locally near (c̃, ε) = (2, 0) by the Implicit Function Theorem. �

Finally, we compute the second-order coefficient in the expansion for ccrit.

Lemma 4.3. There holds c̃(ε) = 2 + σε+ O(ε2), where

σ = lim
ω0→∞

∫ ω0

0

[
ω2e−ω

√
1 − (1 + ω)e−ω

− ω3

2
e−ω

]
dω ≈ −0.3119.
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Proof. The unstable manifold Wu
2 (Q̃−

2 ) of Q̃−
2 is analytic in w2, z2, c̃, and r2. Hence, it follows from

regular perturbation theory that, on any bounded domain, we can make the ansatz

z2(w2, c̃, r2) =
∞∑

j=0

Z2j
(w2, c̃)r

j
2 and c̃(r2) =

∞∑

j=0

Cjr
j
2,(24)

with Z2j
(0, c̃) = 0 for j ≥ 0, in K2. We will consider w2 ∈ [0, δ−1] in the following; recall

the definition of Σout
2 . Substituting (24) into (14), making use of the Chain Rule, expanding

exp
[
− w2

(
r2w2

2 +
r2

2
w2

2

3 + . . .
)]

, and collecting like powers of r2, we obtain a recursive sequence of
differential equations for Z2j

which depend on Cj (j ≥ 0):

O(1) :
dZ20

dw2
Z20

= 2w2e
−w2 ,(25)

O(r2) :
d

dw2
(Z20

Z21
) = C0w2

dZ20

dw2
− w3

2e
−w2 .(26)

Equation (25) is equivalent to (15); hence, Z20
equals z2 as defined in (16). Next, we can solve (26)

using integration by parts,

Z21
(w2, c̃) =

1√
1 − (1 + w2)e−w2

∫ w2

0

[
ω2e−ω

√
1 − (1 + ω)e−ω

− ω3

2
e−ω

]
dω

= 2w2 −
1√

1 − (1 + w2)e−w2

∫ w2

0

[
2
√

1 − (1 + ω)e−ω + ω3e−ω
]
dω,

(27)

where the constant of integration is chosen such that Z21
(0, c̃) = 0 and we have used C0 = 2. In

particular, in Σout
2 , the expansion for Wu

2 (Q̃−
2 ) is given by

zout
2 = z2(δ

−1) ∼ Z20
(δ−1) + εZ21

(δ−1, C0).(28)

We now need to investigate the asymptotics of Wu
2 (Q̃−

2 ) as w2 → ∞. This is readily done in K1,
i.e., we will study the transition from Σin

1 = κ21(Σ
out
2 ) to Σout

1 .
Let Π1 be defined as in Proposition 3.4, and assume that a curve of initial conditions for Π1

is given by (εδ−1, zin
1 , δ) ∈ Σin

1 , with zin
1 = zout

2 as in (28). Since Π1 is C∞-smooth in ε, see
Proposition 3.4, we may expand z1 as

z1(ε1, c̃, ε) ∼ Z10
(ε1, c̃) + εZ11

(ε1, c̃).

Substituting this expansion, as well as the expansion for c̃ from (24), into the equations in (17) and
comparing powers of ε, we obtain the equations

O(1) :
dZ10

dε1
Z10

= − 2

ε31
e
− 1

ε1 ,(29)

O(ε) :
d

dε1
(Z10

Z11
) =

2

ε1

dZ10

dε1
+

e
− 1

ε1

ε51
,(30)

which correspond precisely to (25) and (26) after transformation to K1. One can check that the
corresponding solutions Z10

and Z11
are given by κ21(Z20

) and κ21(Z21
), respectively. In particular,

given (28) as well as εout
1 = ερ−1, we find that zout

1 = Π1(z
in
1 ) is obtained as

zout
1 ∼ 2

√
1 − (1 + ρ

ε
)e−

ρ
ε +

ε√
1 − (1 + ρ

ε
)e−

ρ
ε

∫ ∞

ε
ρ

[
e
− 1

η

η4

√
1 − (1 + 1

η
)e

− 1

η

− 1

2

e
− 1

η

η5

]
dη

︸ ︷︷ ︸
=:I( ε

ρ
)

.(31)
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To determine C1, we have to match Wu(Q̃−) to Ws(Q̃+) in the overlap domain between the
inner and outer regions. Without loss of generality, the matching will be done in Σout

1 . Recalling

that Ṽ = 0 to all orders in ε on Ws(Q̃+), we conclude Z = c̃ and hence zout
1 ∼ 2 + εC1 in Σout

1 for
the contribution from the outer problem. To leading order, we retrieve c̃ = 2 (up to exponentially
small terms in ε). To match the O(ε)-terms in (31) to εC1, note that

I( ε
ρ
) = I(0) + O(e−

κ
ε ) for some κ > 0,

since the corresponding integrand is exponentially small on [0, ε
ρ
] and since ρ > 0. Evaluating I(0)

numerically, we find C1 ∼ I(0) ≈ −0.3119. This completes the proof. �

The numerical value of σ coincides with the result obtained in [19] by means of asymptotic
matching. In fact, the above analysis is closely related to the approach one would take to determine
an expansion for ccrit via the method of matched asymptotics: The “inner expansion” coming from
chart K2 is “matched” to the “outer expansion” derived in chart K1 in the overlap domain between
the two charts. Note that this overlap domain corresponds to the classical “intermediate region”
where one would typically match by defining an “intermediate variable”.

Remark 9. Given the regularity of Π1, it is not surprising that the analysis in K1 is analogous to
that in K2, and that the resulting expansions are equal up to the coordinate change κ21. Although
for ε > 0, one could probably restrict oneself toK2, it seems more natural to analyze the asymptotics
for w2 → ∞ in K1.

Remark 10. Numerical evidence [27] suggests that the one-term truncation of the asymptotic
expansion for ccrit in (2), ccrit(m) ∼ 2

m
, is optimal for m ∈ [2,m1), where m1 ≈ 4. Similarly,

it appears that the two-term truncation is optimal on some finite m-interval (m1,m2), with m1

defined as before. This would indicate that the formal expansion for ccrit(m) might well have
Gevrey properties, cf. e.g. [24]. A rigorous analysis of this question, including the calculation
of the corresponding optimal truncation points, seems to be an interesting problem for further
study. The geometric desingularization presented in this article might well be useful for such an
analysis. See e.g. [16] for an example of how the blow-up technique can be employed to study
Gevrey properties.
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[21] N. Popović and T.J. Kaper. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction-
diffusion equations. J. Dynam. Differential Equations, 2006. To appear.
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