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In [7], the magnetic force on subregions of rigid magnetized bodies was studied as a discrete-to-continuum limit. The de-
rived force formula includes a new term, which depends on the underlying crystalline lattice structure L. It originates from
contributions of magnetic dipole-dipole interactions of dipole moments close to the boundary of the considered subregion.

Further studies of this new term have led to the question of how the magnetic force between two idealized magnets, which
are a distance ε > 0 apart, depends on ε as ε → 0. In this article, analytical aspects of this question are discussed, cf. [5],
where also numerical experiments are performed.
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1 Introduction

Ferromagnetic shape memory alloys have some potential as new micro-devices, cf. e.g. [1]. In order to construct such devices,
a better fundamental understanding of the dynamics of moving interfaces is of interest, cf. e.g. [3] for the study of a micro-
scale cantilever. In this context, the question arises which mathematical formula describes the force between two parts of a
magneto-elastic material best. There is a long list of related literature, cf. the references in [7].

To begin with, we assume the magnetized material to be rigid. Several formulae are known for the magnetic force that is
exerted by one subbody on another [6, 7]. While one can bring the formulae into a form such that the volume force densities
are the same, the surface force densities are different. Therefore, there is some need for experiments to clarify which formula
is the most appropriate. Unfortunately, it is not possible or at least not obvious how to measure magnetic forces in the interior
of a magnetic body. To circumvent this difficulty, we suggest to consider the force between two magnetic bodies – instead of
looking at two subregions of one magnetic body. In particular, we discuss the force between two polygonal bodies A and B
whose boundaries have at least a set of positive surface measure in common. Even for this case, one finds several different
force formulae.

In this article, we outline some analytical results from [5], to which we refer for details. For the sake of brevity, we focus
on polygonal three-dimensional permanent magnets A and B with finitely many edges such that A ∩ B = ∅ and the surface
measure of ∂A ∩ ∂B is positive. Let mA : A → R

3 denote the magnetization corresponding to A; we assume mA to be
a Lipschitz-continuous vector field which is trivially extended to the entire space R

3, i.e., mA = mAχA. Let HA be the
magnetic field which is generated by mA and which is obtained from the magnetostatic Maxwell equations curlHA = 0 and
div (HA + mA) = 0 (in some appropriate physical units). We adopt the same notation for B and denote with HA∪B the
magnetic field generated by m := mA + mB .

The experimental idea which drives both the analytical and the numerical studies in [5] is the following: Take A and B to be
a distance ε > 0 apart and measure the magnetic force between them as ε gets smaller. Then, compare the experimental results
for ε → 0 with the various mathematical formulae under discussion. To prepare and motivate such real-life experiments, we
derive several magnetic force formulae within the geometric framework given above and perform the corresponding numerical
experiments.

2 Classical force formula for separated bodies

Following the above ideas, we first assume A and B to be a distance ε > 0 apart; for definiteness, we shift B along the
(1, 0, 0)-axis and define Bε = {x + ε(1, 0, 0) |x ∈ B}. Then, we apply the classical, well-accepted magnetic force formula
for separated bodies (cf. e.g. [4]),

F
(sep,ε) =

∫

A

(mA · ∇)HBε
dV.

Several numerical experiments involving this formula are performed in [5]. There, we also prove that the limit F
(sep,0) for

ε → 0 exists and that for any ε ≥ 0, the force F
(sep,ε) can be computed via closed-form formulae.
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3 Formula derived from a discrete setting of magnetic dipoles

Secondly, we consider two magnets A and B in contact, i.e., we take the surface measure of ∂A∩∂B to be positive. We focus
on a magnetic force formula which is obtained from a discrete setting of magnetic dipole moments, cf. [7]. Here, we present
a generalization of the theorem to polygonal domains which are in contact, but not necessarily nested. In [5], we additionally
consider another formula F

(Brown), which was intensively studied in [2] and mathematically analyzed in [6].
Let L be a Bravais lattice describing the crystalline structure of the material, e.g. L = Z

3. For each x ∈ 1
`
L, ` ∈ N, we

introduce a magnetic dipole moment m
(`)(x) = 1

`3
m(x) and denote its i-th component by m

(`)
i (x). The magnetic force

between the dipole moments in A∩ 1
`
L and those in B ∩ 1

`
L is given by superposition of all dipole-dipole interactions [7, 5]:

F
(`) =

1

4π

3
∑

i,j=1

∑

x∈Ā∩ 1

`
L

m
(`)
i (x)

∑

y∈B∩ 1

`
L

∇∂i∂j |x − y|−1
m

(`)
j (y).

Theorem 3.1 ([5]) Under the above assumptions on A, B, mA and mB , the limit lim
`→∞

F
(`) =: F(lim) exists and

F
(lim)
k =

∫

A

(mA · ∇)(HA∪B)k dV +
1

2

∫

∂A

(

(mA − mB) · nA

)

(mA · nA)(nA)k dΓ

+
1

2

3
∑

i,j,p=1

Sijkp

∫

∂A∩∂B

(mA)i(mB)j(nA)p dΓ,

(1)

where nA denotes the outer normal to ∂A and

Sijkp := −
1

4π
lim
δ→0

lim
`→∞

∑

z∈Bδ∩
1

`
L\{0}

(

∂k∂i∂j(ϕ
(δ)(z)|z|−1)

)

zp

1

`3
(2)

for an arbitrary smooth function ϕ(δ) : R
3 → [0, 1] with ϕ(z) = 1 if |z| < δ

2 and ϕ(z) = 0 if |z| > δ.

The first two terms in (1) are also of interest by themselves; we therefore set these terms equal to F
(long) and refer to this

formula as the long range force. It turns out that F(sep,0) = F
(long). The third term in (1), called the short range force F

(short),
is an additional surface term, which was first obtained in [6, 7].

4 Discussion and further development

Our analytical and numerical studies [5] are driven by two questions: (i) Which of the force formulae derived within the
continuum theory is the “best” one? To that end, we compare F

(Brown) with F
(sep,0) = F

(long). (ii) Is the additional surface
force contribution F

(short) of physical relevance? That is, we ask whether the discrete-to-continuum limit F
(lim) is a good

formula to describe the magnetic force between two magnets that are in contact.
In the numerical experiments in [5], we consider idealized magnets of cuboidal shape with constant magnetizations at

distances ε > 0 and ε = 0, respectively. We make a first basic observation here. To be specific, let A and B be two unit cubes
which touch at one face, with normal nA = (1, 0, 0). Moreover, let mA = (1, 0, 0) and mB = (1, 0, 0). Then, F(long)

1 ≈ 5.5.
According to (2), we need to fix some underlying lattice structure to calculate the short range force term. We choose L = Z

3

and obtain F
(short)
1 = 1

2 S1111 |∂A ∩ ∂B| ≈ 0.67. Hence, (F
(lim)
1 − F

(long)
1 )/F

(long)
1 = F

(short)
1 /F

(long)
1 ≈ 12.2%. Though

this estimate is based on a number of idealizations, it indicates that the contribution coming from F
(short) is of some relevance

to the total force that one magnet exerts on the other, which would be interesting to verify in real-life experiments.
In Theorem 3.1, the domains A and B are assumed to be in contact. The above observation together with the numerical

experiments for ε > 0 in [5] raises the following question: How does the short range contribution F
(short) change if A and

B are not in contact, but a small distance ε > 0 apart? This question, however, requires new analytical techniques for the
passage from the discrete setting to the continuum.
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