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Abstract. We investigate traveling wave solutions in a family of reaction-diffusion equa-
tions which includes the Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with
quadratic nonlinearity and a bistable equation with degenerate cubic nonlinearity. It is
known that, for each equation in this family, there is a critical wave speed which separates
waves of exponential decay from those of algebraic decay at one of the end states. We de-
rive rigorous asymptotic expansions for these critical speeds by perturbing off the classical
FKPP and bistable cases. Our approach uses geometric singular perturbation theory and
the blow-up technique, as well as a variant of the Melnikov method, and confirms the re-
sults previously obtained through asymptotic analysis in [J.H. Merkin and D.J. Needham,
J. Appl. Math. Phys. (ZAMP) A, 44(4):707-721, 1993] and [T.P. Witelski, K. Ono, and
T.J. Kaper, Appl. Math. Lett., 14(1):65-73, 2001].

1. Introduction

We consider traveling wave solutions for the family of scalar reaction-diffusion equations
given by

∂u

∂t
=

∂2u

∂x2
+ fm(u),(1)

where the potential functions fm(u) are defined by fm(u) = 2um(1 − u) for m ≥ 1. This
family of equations includes the Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation
(m = 1) [Fis37, KPP37], as well as a bistable equation (m = 2) [CCL75, WOK01], and
has arisen in the study of numerous phenomena in biology, optics, combustion, and other
disciplines, see e.g. [Bri86, MN93, SM96, NB99].

Traveling waves of velocity c are solutions of (1) that connect the rest states u = 0 and
u = 1 and that are stationary in a frame moving at the constant wave speed c. Let ξ = x−ct

and U(ξ) = u(x, t); then, traveling waves are found as solutions of the nonlinear second-order
equation

U ′′ + cU ′ + fm(U) = 0(2)

with 0 ≤ U ≤ 1 for ξ ∈ R that satisfy

lim
ξ→−∞

U(ξ) = 1 and lim
ξ→∞

U(ξ) = 0,(3)
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where the prime denotes differentiation with respect to ξ. It is well-known that for each
m ≥ 1, there is a critical wave speed ccrit(m) > 0 such that traveling wave solutions exist
for c ≥ ccrit(m) in (1) [Bri86, BN91, MN93]. The speed ccrit(m) is critical in the sense that
the wave decays exponentially ahead of the wave front (i.e. for ξ → ∞) when c = ccrit(m),
whereas it decays at an algebraic rate for c > ccrit(m).

In the (U,U ′)-phase plane, traveling wave solutions of (1) correspond to heteroclinic tra-
jectories of the system

U ′ = V,

V ′ = −fm(U) − cV,
(4)

connecting the two equilibria (1, 0) and (0, 0). Geometrically, the dependence of these solu-
tions on c can be understood as follows. The point (1, 0) is a hyperbolic saddle regardless

of the value of c, with eigenvalues λ1,2 = − c
2
±
√

c2

4
+ 2. Traveling waves exist when the

unstable manifold of this saddle point connects to the equilibrium at the origin. Moreover,
the nature of this connection determines the type of the traveling wave. To be precise, for
m > 1, the origin is a semi-hyperbolic fixed point. The eigenvalues of (4) at (0, 0) are −c and
0, with eigenvectors (1,−c)T and (1, 0)T , respectively. Whenever c > ccrit(m), the lower left
branch of the unstable manifold of (1, 0) approaches the origin on a one-dimensional center
manifold, which is locally tangent to the span of the eigenvector (1, 0)T . Hence, solutions
decay merely algebraically as ξ → ∞. Precisely for c = ccrit(m), however, this same branch
coincides with the one-dimensional strong stable manifold of (0, 0); hence, solutions approach
the origin tangent to the span of (1,−c)T and decay exponentially for ξ → ∞. Therefore,
for each m > 1, a global bifurcation occurs at c = ccrit(m) due to the switchover from one
type of connection to another in (4).

For m > 1 and c < ccrit(m), no heteroclinic solutions to (4) exist, as the unstable manifold
of (1, 0) does not enter the basin of attraction of the origin, but veers off to become unbounded
for ξ → ∞.

Finally, for m = 1, the critical speed ccrit(1) = 2
√

2 is determined by a local transition
condition, with the origin changing from being a stable node for c > ccrit(1) via a degenerate

node at c = ccrit(1) to a stable spiral for c < ccrit(1). In terms of U , this implies U ∼ Cξe−
√

2ξ

for c = 2
√

2 as ξ → ∞, whereas the decay is strictly exponential for c > 2
√

2.

We study (4) for m = n + ε, where n = 1, 2, with 0 < ε � 1 for n = 1 and 0 < |ε| � 1 for
n = 2, respectively. In both cases, we derive rigorous asymptotic expansions for the critical
wave speed ccrit(m) ≡ cn

crit(ε) that separates algebraic solutions from those of exponential
structure. More specifically, we will prove

c1
crit(ε) = 2

√
2 −

√
2Ω0ε

2

3 + O(ε) for ε ∈ (0, ε0)(5)

and

c2
crit(ε) = 1 − 13

24
ε + O(ε2) for ε ∈ (−ε0, ε0),(6)

respectively, where ε0 > 0 has to be chosen sufficiently small and −Ω0 ≈ −2.338107 is the
first real zero of the Airy function. Hence, our findings confirm the more formal results
previously obtained in [MN93] (n = 1) and [WOK01] (n = 2) by means of asymptotic
analysis. The restriction to ε positive for n = 1 is necessary, as it has been shown [NB99]
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that no traveling wave solutions for (4) can exist when m < 1. This fact will also become
apparent through our analysis: We will confirm that m = 1 is a borderline case and will
provide a geometric justification.

Given the above assumptions, it is useful to write (4) as

U ′ = V,

V ′ = −2Un+ε(1 − U) − cV.
(7)

Note that the vector field in (7) is generally only Cn in U and even just Cn−1 when ε is
negative. To circumvent this lack of smoothness, as well as the inherent non-hyperbolic
character of the problem, and to facilitate an analysis of (7) by geometric singular pertur-
bation techniques, we propose an alternative formulation for (7). Our approach is based on
introducing projectivized coordinates in (7) by setting Z = V

U
. In terms of U and the new

variable Z, the equations in (7) become

U ′ = UZ,

Z ′ = −2Un−1+ε(1 − U) − cZ − Z2.
(8)

The introduction of Z is motivated by the observation that U ′

U
∼ −c as ξ → ∞ for solutions

that approach the origin in (7) along its strong stable manifold, whereas U ′

U
∼ 0 when the

approach is along a center manifold. Therefore, the projectivization via Z is a first step to
teasing apart the various possible asymptotics in (7), as these correspond to different regimes
in the projectivized equations in (8). As will become clear in the following, it also eliminates
some – though not all – of the non-hyperbolicity from the problem and, hence, enables us to
apply techniques from dynamical systems theory which might otherwise not be applicable.

Next, we define Y = −ε ln U to eliminate the U ε-term in (8):

U ′ = UZ,

Z ′ = −2e−Y Un−1(1 − U) − cZ − Z2,

Y ′ = −εZ.

(9)

System (9) is a fast-slow system, with U , Z fast and Y slow. Moreover, as opposed to (7),
(9) is Ck-smooth in all three variables U , Z, and Y , as well as in the parameters ε and c, for
any k ∈ N. In the following, we will consider (9) as a system in which the three variables U ,
Z, and Y are treated equally. Since (7) and (9) are equivalent by the definition of Z and Y

(at least for U ∈ (0, 1)), the subsequent analysis (and in particular the expansions for cn
crit(ε)

derived below) will then carry over from (9) to (7).
As it turns out, the additional complexity introduced by embedding the planar system (8)

into a three-dimensional system (9) is compensated by the resulting gain in smoothness. In
fact, for n = 2, the equations in (9) can be treated directly using a variant of the Melnikov
method for fast-slow systems which was first introduced in [Rob83]. In addition to giving us
explicitly the first-order correction in the expansion for c2

crit, this approach also proves the
regularity of c2

crit(ε) as a function of ε, see (6).
The situation is more complicated for n = 1. There, one finds that, after a center manifold

reduction, the equations are locally equivalent to the singularly perturbed planar fold prob-
lem which was analyzed in full detail via the so-called blow-up technique [DR91, Dum93]
in a series of articles by Krupa and Szmolyan, see e.g. [KS01] and the references therein.
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Our analysis shows that the complicated structure of the problem for n = 1 is determined
by the characteristics of the underlying singularly perturbed planar fold, and it provides a
non-trivial application of the more general results presented in [KS01]. This correspondence
also explains the a priori unexpected expansion for c1

crit(ε) in fractional powers of ε, cf. (5),
as these powers arise naturally through the blow-up transformation. We retrace the analysis
of [KS01] here, taking into account the inclusion of the parameter c. It turns out that the
additional degree of freedom introduced into the problem by c is essential, as it is this free-
dom which allows us to identify the one solution of (9) corresponding to the critical speed
c1
crit out of an entire family of possible solutions. In particular, c1

crit is determined by the
geometric condition that this solution stay close to the repelling branch of a critical manifold
for (9) for an infinite amount of time. In that sense, the criticality of c1

crit can be interpreted
as a canard phenomenon [Die84], see also [GHW00], where such solutions are referred to as
“fold initiated canards”.

This article is organized as follows. In Section 2, we show how the equations in (9) with
n = 1 can be reduced to the singularly perturbed planar fold problem. We then adapt the
results from [KS01] to obtain the desired expansion for c1

crit(ε). In Section 3, we present
a modification of the Melnikov method for fast-slow systems from [Rob83], which we then
apply to (9) with n = 2 to derive the expansion for c2

crit(ε).

Remark 1. The equations in (8) may also be derived from (2) via the well-known transfor-
mation

U(ξ) = C exp
[ ∫ ξ

Z(s) ds
]
,(10)

which (for U 6= 0) shows (2) to be equivalent to (8).

Remark 2. Alternatively, (8) can be obtained from (4) through blow-up, i.e. the degenerate
origin in (4) can be desingularized directly by means of a homogeneous blow-up transforma-
tion. Then, (8) is retrieved in one of the charts which are commonly introduced to describe
the blown-up vector field. This is to be expected, since blow-up can also be viewed as a kind
of projectivization. However, we do not pursue this approach here.

2. Traveling waves for m = 1 + ε

When m = 1 + ε, the equations in (4) are given by

U ′ = V,

V ′ = −2U 1+ε(1 − U) − cV.
(11)

It is well-known that c1
crit = 2

√
2 when ε = 0 in (11). The main result of this section is the

following theorem on the asymptotics of c1
crit for ε positive and small:

Theorem 1. There exists an ε0 > 0 such that for ε ∈ (0, ε0), the critical wave speed c1
crit

for (11) can be represented as a function of ε. Moreover, the expansion of c1
crit is regular in

powers of ε
1

3 and is given by

c1
crit(ε) = 2

√
2 −

√
2Ω0ε

2

3 + O(ε).(12)

Here, −Ω0 ≈ −2.338107 is the first real zero of the Airy function.
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Up to a factor of
√

2 (which is due to an additional factor of 2 in our definition of fm),
this is exactly the expansion found in [MN93] by the method of matched asymptotics. In
particular, note that c1

crit is non-smooth (not even C1) in ε as ε → 0.

Remark 3. By proving Theorem 1 using geometric singular perturbation theory, we will
obtain an alternative proof of the well-known existence and uniqueness of traveling waves for
c ≥ c1

crit in (11).

2.1. The projectivized equations for ε = 0. For n = 1, one obtains from (9) the
projectivized system

U ′ = UZ,

Z ′ = −2(1 − U)e−Y − cZ − Z2,

Y ′ = −εZ.

(13)

Recall that for ε = 0 in (13), the critical wave speed is given by c1
crit = 2

√
2, which will

be used repeatedly throughout the following analysis. Moreover, there holds Y = 0 by
definition. Then, a straightforward computation shows that there are two equilibria for (13),
with U = 1 and Z = 0 or U = 0 and Z = −

√
2. More precisely, one has the following simple

lemma:

Lemma 1. When ε = 0, the point Q− : (1, 0) is a hyperbolic saddle fixed point of

U ′ = UZ,

Z ′ = −2(1 − U) − 2
√

2Z − Z2,

with the eigenvalues given by λ1 = 2−
√

2 and λ2 = −2−
√

2. The corresponding eigenspaces
are spanned by (1, 2 −

√
2)T and (1,−2 −

√
2)T . The point Q+ : (0,−

√
2) is a semi-

hyperbolic fixed point, with eigenvalues 0 and −
√

2 and corresponding eigendirections (0, 1)T

and (1,−
√

2)T .

Additionally, from the existence of a singular heteroclinic solution to (11) it follows that
there exists an orbit Γ connecting Q− and Q+; note that no closed-form expression for Γ
seems to be known, see e.g. [Bri86] and the references therein.

2.2. Strategy of the proof via blow-up. In this section, we outline the proof of The-
orem 1, which is based on the blow-up method. We show that, after a center manifold
reduction, equations (13) locally reduce to the singularly perturbed planar fold problem,
which has been analyzed in detail in [KS01]. In particular, this correspondence will explain
the a priori unexpected expansion for c1

crit(ε) in fractional powers of ε. Standard center
manifold theory will then enable us to extend our results to the full system (13).

We set out by rewriting (13) in terms of the new variables Z̃ :=
√

2+Z and c̃ := −2
√

2+c,

whereby for ε = 0, the equilibrium at Q+ is shifted to the origin, which we label Q̃+.
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Moreover, we extend (13) by appending the trivial equations c̃′ = 0 and ε′ = 0:

U ′ = −U(
√

2 − Z̃),

Z̃ ′ = 2 − 2(1 − U)e−Y + c̃(
√

2 − Z̃) − Z̃2,

Y ′ = ε(
√

2 − Z̃),

c̃′ = 0,

ε′ = 0.

(14)

The following result follows immediately from Lemma 1 and standard invariant manifold
theory [Car81, CLW94].

Proposition 1. For any k ∈ N, the equations in (14) possess an attracting Ck-smooth

center manifold Wc at Q̃+. Wc is four-dimensional and is, to all orders, given by {U = 0}.
Moreover, in some neighborhood of Q̃+, there exists a stable invariant foliation F s of Wc

with one-dimensional fibers, where the contraction along F s is stronger than e−λξ for some
0 < λ <

√
2.

The restriction of (14) to W c is given by

Z ′ = 2(1 − e−Y ) + c(
√

2 − Z) − Z2,

Y ′ = ε(
√

2 − Z),

c′ = 0,

ε′ = 0.

(15)

Here and in the following, we omit the tildes for convenience of notation. Since by Proposi-
tion 1, Wc is exponentially attracting, the fate of solutions starting in the unstable manifold
Wu(Q−) of the point Q− in the original system (13) for small ε and ξ sufficiently large will
be determined by the dynamics of (15) on W c. When referring to solutions of (13), we will
henceforth always mean solutions on Wu(Q−) which converge to Q− as ξ → −∞.

Clearly, (15) is a fast-slow system in (extended) standard form, with Z fast and Y slow.
By setting ε = 0 in (15) and taking into account that c = O(1) by definition, one finds that
the critical manifold S for (15) is given by

(16) S = Sr ∪ Sa

=
{
(Z, Y )

∣∣Z = −
√

2(1 − e−Y ), Y ≥ 0
}
∪
{
(Z, Y )

∣∣Z =
√

2(1 − e−Y ), Y ≥ 0
}
.

Moreover, one sees that S is normally hyperbolic except at (Z, Y ) = (0, 0), with S r being
normally repelling and Sa normally attracting for the corresponding layer problem,

Z ′ = 2(1 − e−Y ) − Z2,

Y ′ = 0.

The geometry of (15) for ε = 0 is illustrated in Figure 1.
By standard geometric singular perturbation theory [Fen79, Jon95], we conclude that

outside any small neighborhood of the origin, Sr and Sa perturb smoothly to locally invariant
manifolds Sr

ε and Sa
ε , respectively, for ε 6= 0 sufficiently small.
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Wc

Sr

−
√

2

√
2

Q̃+

Γ

U

Z̃

Y

Sa

Figure 1. The dynamics of (15) on W c for ε = 0.

Note that the repelling branch Sr
ε of Sε is the one we are interested in. For ε > 0 sufficiently

small, it corresponds to the unique heteroclinic solution of (13) which exhibits exponential
decay for ξ → ∞; therefore, c equals c1

crit(ε), the critical wave speed (Figure 2(b)). This fact
will become more apparent through the analysis in the subsequent subsections. Generically,
however, Wu(Q−) will miss Sr

ε : For c > c1
crit(ε), any solution on Wu(Q−) will asymptote to

Sa
ε (Figure 2(a)), whereas for c < c1

crit(ε), there are no bounded solutions on Wu(Q−), as any
solution which enters Wc will be repelled away from Sε altogether and go off to Z = −∞
(Figure 2(c)).

Finally, the equations in (15) indicate why there can be no bounded solution to (13) (or,
equivalently, to (11)) for ε < 0 regardless of the value of c, as pointed out in [MN93]: Since
Y = −ε ln U , it would then follow that Y < 0. For any such Y , however, the dynamics on
Wc are governed exclusively by the fast flow in (15), which implies Z ′ < −Z2 and hence
Z → −∞ (see Figure 2(d)).

To analyze the passage of solutions past the origin in more detail, we have to consider
the regime where Y and Z are small. Then, one can expand the right-hand side in (15) to
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Sr
Sa

ε

−
√

2

√
2

Wu(Q−)

Y

U

eZ

Sa

(a) ε > 0: For c > c1
crit, solutions

on Wu(Q−) asymptote to Sa

ε
.

Sr

−
√

2

√
2

Wu(Q−)

Y

U

eZ

Sa

Sr
ε

(b) ε > 0: When c = c1
crit,

Wu(Q−) coincides with Sr

ε
.

Sr

−
√

2

√
2

Wu(Q−)

Y

U

eZ

Sa

(c) ε > 0: For c < c1
crit, all solu-

tions on Wu(Q−) are unbounded.

Sr

−
√

2

√
2

Wu(Q−)

Y

U

eZ

Sa

(d) ε < 0: No bounded solution
exists for any value of c.

Figure 2. The geometry of (13) for ε 6= 0 small.

obtain

Z ′ = 2Y − Y 2 + O(Y 3) +
√

2c − cZ − Z2,

Y ′ = ε(
√

2 − Z),

c′ = 0,

ε′ = 0.

(17)
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For Y , Z, and c small, system (17) to leading order is precisely the singularly perturbed fold
problem treated in full detail in [KS01]. However, our equations are different insofar as the
additional parameter c has to be accounted for. Moreover, the structure of the higher-order
terms in (17) is specific, as

Z ′ = 2Y − Z2 + O(c, cZ, Y 2),

Y ′ = ε
(√

2 + O(Z)
)
,

whereas the analysis in [KS01] is concerned with systems of the more general form

x′ = −y + x2 + O(ε, xy, y2, x3),

y′ = ε
(
− 1 + O(x, y, ε)

)
.

Hence, after a rescaling of the variables in (17) via Ẑ = Z√
2
, Ŷ = Y + c√

2
, and ξ̂ = −

√
2ξ, our

equations do fit into the framework of [KS01], as our assumptions actually imply c = O(1).

2.3. Desingularization of the origin in (17). We will in the following briefly recall the
results of [KS01] adapted to the present setting and indicate the necessary modifications. To
desingularize the non-hyperbolic origin in (17), we introduce the blow-up transformation

Z = r̄z̄, Y = r̄2ȳ, c = r̄2c̄, ε = r̄3ε̄(18)

which maps the manifold B := S
2×[−c0, c0]×[0, r0] to R

4. Here, S
2 =

{
(z̄, ȳ, ε̄)

∣∣ z̄2+ȳ2+ε̄2 =

1
}

denotes the two-sphere in R
4, and c0 and r0 are positive constants which have to be chosen

sufficiently small; in fact, given r0, ε0 in Theorem 1 is fixed via ε0 = r3
0. Apart from the

rescaling of c which has to be included here, this quasi-homogeneous blow-up has been
established to give the correct scaling for the treatment of the planar fold in [KS01].

The blown-up vector field induced by (17) is most conveniently studied by introducing
different charts for the manifold B. As in [KS01], we require the rescaling chart K2 which
covers the upper half-sphere defined by ε̄ > 0, as well as two other charts (K1 and K3) which
describe the portions of the equator of S

2 corresponding to ȳ > 0 and z̄ > 0, respectively. We
will first analyze the dynamics in each of these charts separately and then, in Section 2.4,
combine the results into the proof of Theorem 1.

Remark 4. Given any object � in the original setting, we will in the following denote the
corresponding object in the blown-up coordinates by �; in charts Ki, i = 1, 2, 3, the same
object will appear as �i when necessary.

2.3.1. Dynamics in chart K1. Chart K1, which is defined by ȳ = 1, is introduced to analyze
the vector field in (17) for Y > 0, but small. From (18), we have

Z = r1z1, Y = r2
1, c = r2

1c1, ε = r3
1ε1(19)
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for the blow-up transformation in K1. By plugging (19) into (17) and desingularizing (i.e.
by dividing out a factor r1 from the resulting equations), we obtain

z′1 = 2 − z2
1 + c1(

√
2 − r1z1) −

z1ε1

2
(
√

2 − r1z1) + O(r2
1),

r′1 =
r1ε1

2
(
√

2 − r1z1),

c′1 = −c1ε1(
√

2 − r1z1),

ε′1 = −3ε2
1

2
(
√

2 − r1z1),

(20)

where the prime now denotes differentiation with respect to a new (rescaled) independent
variable ξ1.

The invariant sets of this system are given by {r1 = 0}, {c1 = 0}, and {ε1 = 0}; moreover,
in the intersection of these three planes lies the invariant line `1 :=

{
(z1, 0, 0, 0)

∣∣ z1 ∈ R
}
.

The dynamics on `1 are governed by z′
1 = 2−z2

1 . As in [KS01, Section 2.5], one can conclude
the existence of two hyperbolic equilibria P a

1 = (
√

2, 0, 0, 0) and P r
1 = (−

√
2, 0, 0, 0) on `1,

with P a
1 attracting and P r

1 repelling, and the relevant eigenvalues given by ∓2
√

2. Moreover,
in {c1 = 0} ∩ {ε1 = 0}, (20) reduces to

z′1 = 2 − z2
1 + O(r2

1),

r′1 = 0,
(21)

which, by the Implicit Function Theorem, implies that there exist two normally hyperbolic
curves of equilibria for r1 small, say Sa

1 and Sr
1 . As in [KS01], these two curves correspond

to the two branches Sa and Sr of the critical manifold S after transformation to chart K1.
Similarly, in {r1 = 0}, (20) becomes

z′1 = 2 − z2
1 +

√
2c1 −

z1ε1√
2

,

c′1 = −
√

2c1ε1,

ε′1 = −3ε2
1√
2
.

(22)

One recovers P a
1 and P r

1 . Also, due to the second and third equation, there is a double
zero eigenvalue now, with corresponding eigenvectors (1, 0,−2

√
2)T and (0, 1,±

√
2)T , re-

spectively. Thus, there exists an attracting (repelling) two-dimensional center manifold N a
1

(N r
1 ) at P a

1 (P r
1 ) for |c1| and |ε1| small (in fact, it suffices to consider ε1 > 0 here, as we

assume ε > 0). In sum, by having followed [KS01], we have

Proposition 2. For r1, |c1|, and ε1 in (20) sufficiently small and k ∈ N, there holds:

(1) There exists an attracting three-dimensional Ck-smooth center manifold Ma
1 at P a

1

containing both Sa
1 and N a

1 . The branch of N a
1 contained in {ε1 > 0} is not unique.

(2) There exists a repelling three-dimensional Ck-smooth center manifold Mr
1 at P r

1 con-
taining both Sr

1 and N r
1 . The branch of N r

1 contained in {ε1 > 0} is unique.
(3) There exists a stable invariant foliation F s

1 of Ma
1 with one-dimensional fibers, where

the contraction along F s
1 is stronger than e−λξ1 for some 0 < λ < 2

√
2.
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(4) There exists an unstable invariant foliation Fu
1 of Mr

1 with one-dimensional fibers,
where the expansion along Fu

1 is stronger than eλξ1 for some 0 < λ < 2
√

2.

2.3.2. Dynamics in chart K2. In chart K2, which corresponds to ε̄ = 1 in (18), the blow-up
transformation is given by

Z = r2z2, Y = r2
2y2, c = r2

2c2, ε = r3
2.

After desingularization, the equations in (17) become

z′2 = 2y2 +
√

2c2 − z2
2 − r2c2z2 + O(r2

2),

y′
2 =

√
2 − r2z2,

c′2 = 0,

r′2 = 0.

(23)

System (23) can be regarded as a two-dimensional system for (y2, z2) parametrized by c2

and r2. We will first study the simplified equations obtained from (23) by neglecting the
perturbative terms in r2 and will consider the effect of the perturbation afterwards.

Setting r2 = 0 in (23), we find

z′2 = 2y2 +
√

2c2 − z2
2 ,

y′
2 =

√
2,

(24)

which is a Riccati equation and can be solved in terms of special functions. In analogy to
[KS01, Proposition 2.3], we have

Proposition 3. Equations (24) have the following properties:

(1) Each orbit of (24) has a horizontal asymptote {y2 = α+}, where α+ depends on the
orbit, which it approaches from above as z2 → ∞.

(2) There exists a unique orbit γ2 = γ2(c2) which is asymptotic to the left branch of
{2y2 +

√
2c2− z2

2 = 0} for z2 → −∞ and which asymptotes to {y2 = −Ω0− c2√
2
}, with

Ω0 > 0, as z2 → ∞.
(3) The orbit γ2 can be parametrized as (z2, s(z2, c2)) (z2 ∈ R), where

s(z2, c2) = − c2√
2

+
z2
2

2
+

1√
2z2

+ O(z−4
2 ) for z2 → −∞

and

s(z2, c2) = −Ω0 −
c2√
2

+

√
2

z2

+ O(z−3
2 ) for z2 → ∞.

(4) All orbits to the right of γ2 are forward asymptotic to the right branch of {2y2 +√
2c2 − z2

2 = 0}.
(5) All orbits to the left of γ2 have a horizontal asymptote {y2 = α−}, where α− > α+

depends on the orbit, such that y2 approaches α− from below as z2 → −∞.

Proof. After introducing the new coordinates ỹ2 = y2 + c2√
2

and z̃2 = z2√
2

in (24), we obtain

z̃′2 = −
√

2(−ỹ2 + z̃2
2),

ỹ′
2 =

√
2.

11



−Ω0 − c2√
2

γ2

z2

y2

Figure 3. Solutions of the Riccati equation (24).

By rescaling time to divide out a factor −
√

2 from the right-hand sides above, we obtain
precisely Equations (2.16) from [KS01]. The result then follows immediately from their
Proposition 2.3. �

The situation is illustrated in Figure 3.

Remark 5. As pointed out in [KS01], the constant Ω0 > 0 is the smallest positive zero of

J− 1

3

(2

3
z

3

2

)
+ J 1

3

(2

3
z

3

2

)
,

where J± 1

3

are Bessel functions of the first kind. Moreover, using the identity

3√
z
Ai(−z) = J− 1

3

(2

3
z

3

2

)
+ J 1

3

(2

3
z

3

2

)

from [AS74], we see that −Ω0 can also be found as the smallest negative zero of the Airy
function Ai.

Remark 6. Setting z2 =
w′

2

w2

in (24) and making use of y2 =
√

2ξ2 leads to

w′′
2 −

√
2(2ξ2 + c2)w2 = 0,

which is the analog of the Airy equation derived in [MN93] in what is called the “middle
region” there. Incidentally, note that Airy equations arise in the analysis of turning point
problems by means of JWKB techniques and asymptotic matching, cf. also Section 2.6

below. To be precise, they (as well as the corresponding Riccati equations obtained via the
above transformation) occur in the derivation of the so-called connection formulae for these
problems [BO78].

12



2.3.3. Dynamics in chart K3. In K3, one sets z̄ = 1 in (18) to obtain

Z = r3, Y = r2
3y3, c = r2

3c3, ε = r3
3ε3.(25)

Chart K3 covers the neighborhood of the equator of S
2 corresponding to Z > 0 and is used

to analyze the dynamics of the vector field in (17) close to the Y -axis.
After desingularizing, we have the following equations:

r′3 = −r3F (r3, y3, c3),

y′
3 = 2y3F (r3, y3, c3) + ε3(

√
2 − r3),

c′3 = 2c3F (r3, y3, c3),

ε′3 = 3ε3F (r3, y3, c3),

(26)

where F (r3, y3, c3) := 1 − 2y3 −
√

2c3 + r3c3 + O(r2
3). The hyperplanes {r3 = 0}, {c3 = 0},

and {ε3 = 0} as well as the (r3, c3)-plane are invariant under the resulting flow. Due to the
fact that F ≈ 1 for y3 small, we may divide out a factor F from (26) to obtain

r′3 = −r3,

y′
3 = 2y3 +

√
2ε3 − r3ε3 + 2

√
2y3ε3 + 2c3ε3 + O(3),

c′3 = 2c3,

ε′3 = 3ε3.

(27)

Lemma 2. The origin is a hyperbolic equilibrium of (27), with the eigenvalues given by
λ1 = −1, λ2 = 2 (double), and λ3 = 3. The corresponding eigenspaces are spanned by
(1, 0, 0, 0)T , {(0, 1, 0, 0)T , (0, 0, 1, 0)T}, and (0,

√
2, 0, 1)T , respectively.

The point Q3 := (0, 0, 0, 0) is the entry point of the fast flow and is the analog of the
equilibrium termed qout in [KS01].

Remark 7. For y3 = 1
2

in (26), one retrieves the point P a
1 (corresponding to the attracting

branch Sa of S) from chart K1.

2.4. Proof of Theorem 1. To complete our picture of the dynamics of (17) in a neigh-
borhood of the fold point at the origin in W c, we have to combine the dynamics in charts
K1, K2, and K3. The following lemma relates the coordinates in these three charts on their
respective domains of overlap:

Lemma 3. The change of coordinates κ12 : K1 → K2 from K1 to K2 reads

z2 = z1ε
− 1

3

1 , y2 = ε
− 2

3

1 , c2 = c1ε
− 2

3

1 , r2 = r1ε
1

3

1 ,(28)

with the inverse κ21 = κ−1
12 given by

z1 = z2y
− 1

2

2 , r1 = r2y
1

2

2 , c1 = c2y
−1
2 , ε1 = y

− 3

2

2 .(29)

Similarly, for κ23 : K2 → K3 and κ32 = κ−1
23 , one finds

r3 = r2z2, y3 = y2z
−2
2 , c3 = c2z

−2
2 , ε3 = z−3

2(30)

and

z2 = ε
− 1

3

3 , y2 = y3ε
− 2

3

3 , c2 = c3ε
− 2

3

3 , r2 = r3ε
1

3

3 ,(31)

respectively.
13



Next, we study the family of orbits {γ2(c2)} retrieved in K2 for r2 = 0, investigating what
this family corresponds to in the two remaining charts.

Lemma 4. For z2 > 0, let γ1 := κ21(γ2), where κ21 is defined as in Lemma 3; similarly, for
y2 > 0, let γ3 := κ23(γ2). Then, the following holds:

(1) In K1, γ1 is contained in the unique branch of N r
1 from Proposition 2, and converges

to P r
1 as ε1 → 0 irrespective of the choice of c2.

(2) The orbit γ3 lies in {r3 = 0}, and converges to Q3 as ε3 → 0 in K3. Moreover, the
convergence is along the c3-axis for c2 = −

√
2Ω0. For any c2 6= −

√
2Ω0, γ3 is tangent

to span{(0, 1, 0, 0)T , (0, 0, 1, 0)T} as ε3 → 0.

Proof. Given Proposition 3 and Lemma 3, one finds the expansion
(

z2

(
− c2√

2
+

z2
2

2
+

1√
2z2

+ O(z−4
2 )

)− 1

2

, 0, c2

(
− c2√

2
+

z2
2

2
+

1√
2z2

+ O(z−4
2 )

)−1

,

(
− c2√

2
+

z2
2

2
+

1√
2z2

+ O(z−4
2 )

)− 3

2

)

for γ1 as z2 → −∞. Expanding the above in powers of z2 shows that γ1 converges to
P r

1 = (−
√

2, 0, 0, 0) tangent to the center direction (1, 0,−2, 0)T for z2 → −∞ and y2 → ∞
in K2, which implies ε1 → 0 in K1, see also [KS01, Proposition 2.6].

Similarly, by applying the expansion given in Proposition 3 as z2 → ∞, one finds
(

0,
−Ω0 − c2√

2

z2
2

+

√
2

z3
2

+ O(z−5
2 ),

c2

z2
2

,
1

z3
2

)

for γ3. As the limit z2 → ∞ corresponds to letting ε3 → 0 in K3, this completes the proof.
�

Remark 8. An argument similar to the above shows that the orbits in K2 specified in Propo-
sition 3(4) correspond to one of the non-unique branches of N a

1 each and converge to P a
1 in

K1. In K3, these orbits are still asymptotic to Q3 as ε3 → 0 and approach Q3 tangent to
span{(0, 1, 0, 0)T , (0, 0, 1, 0)T}.

We are now ready to state the proof of our main result:

Proof of Theorem 1. First, we show that in the singular limit ε = 0, the projection of

Wu(Q−) × [−c̃0, c̃0] (for any c̃0 > 0 small) onto Wc must lie in the (Z̃, c̃)-plane. Indeed,
for ε = 0, there holds Y = 0, and there is clearly no variation in Y under (14) along the
singular orbit Γ. In K3, it then follows from the invariance of the (r3, c3)-plane under (26)
that the corresponding singular orbit Γ3 can have no component in the y3-direction. Hence,
it must lie in {y3 = 0} ∩ {ε3 = 0}.

Second, recall that the special orbit γ2 in K2 is the one we are interested in, as it is
asymptotic to the left branch of {2y2 +

√
2c2−z2

2 = 0} for z2 → −∞ by Proposition 3(2) and
hence corresponds to the one solution of (17) which connects to the repelling branch S r in
the original coordinates. Since Y ≥ 0 by definition, it follows from Lemma 3 that necessarily
y2 ≥ 0, as well. Hence, Proposition 3(3) implies that c2 ≤ −

√
2Ω0 must hold for the orbit

γ2(c2) to be admissible.
14



γ2

z2

y2

(a) For c2 > −
√

2Ω0, the orbit is
asymptotic to the right branch of
{2y2 +

√
2c2 − z2

2 = 0}.

γ2

z2

y2

(b) When c2 = −
√

2Ω0, the orbit
equals γ2 and is asymptotic to the left
branch of {2y2 − 2Ω0 − z2

2 = 0}.

γ2

z2

y2

(c) For c2 < −
√

2Ω0, the orbit be-
comes unbounded as z2 → −∞.

Figure 4. The phase portrait of the unperturbed equations (24) in K2 for
different choices of c2. The bold curve represents the unique orbit for which
y2 → 0 as z2 → ∞.

Now, by combining these two observations, one can see directly that c2 = −
√

2Ω0. Namely,
of all the admissible orbits (as found in our second observation), the only such orbit which
has zero tangential y3-component – as required by our first observation – is obtained precisely
for c2 = −

√
2Ω0, see Lemma 4. Here, −Ω0 ≈ −2.338107 is the smallest negative zero of the

Airy function, cf. Remark 5.
15



By Proposition 3(3), it follows that this choice of c2 implies y2 → 0 as z2 → ∞ (Fig-
ure 4(b)). By Proposition 3(1), other choices of c2 can yield solutions to (24) for which
y2 → 0 as z2 → ∞. However, such solutions are either forward asymptotic to the right
branch of {2y2 +

√
2c2 − z2

2 = 0} (Figure 4(a)), or become unbounded for z2 → −∞ (Fig-
ure 4(c)). Consequently, they correspond to solutions of (17) which are forward asymptotic
to Sa or which become unbounded for Z → −∞, respectively. Hence, by fixing c2 = −

√
2Ω0

as required by the asymptotics of γ2 in K2, we have determined the leading-order behavior
of c̃(ε), which will give the desired expansion for c̃ after blow-down since c̃ = r2

2c2.
It remains to show that the next-order correction in c̃ will be O(ε). Let us define sections

Σin
3 and Σout

3 in K3 via

Σout
3 =

{
(r3, y3, c3, ε3) ∈ U3

∣∣ ε3 = δ
}

and Σin
3 =

{
(r3, y3, c3, ε3) ∈ U3

∣∣ r3 = ρ
}
,

where U3 is a sufficiently small neighborhood of the origin in K3 and 0 < ρ, δ � 1 are fixed.
Let Σin

2 denote the section in K2 obtained from Σout
3 via the coordinate change κ32 specified

in Lemma 3. Moreover, let Σin =
{
(Z, Y, c, ε) ∈ U

∣∣Z = ρ
}

be the section corresponding to
Σin

3 in the original coordinates, with U an appropriately defined neighborhood of the origin.

Lemma 5. In Σin, there holds

c̃(ε) = −
√

2Ω0ε
2

3 + O(ε).

Proof. First, by regular perturbation theory, we know that

c2 = −
√

2Ω0 + αr2 + O(r2
2)(32)

on bounded domains in K2, where α is some constant. Hence, in K3,

c3 = −
√

2Ω0ε
2

3

3 + αr3ε3 + O
(
r2
3ε

4

3

3

)
,

since c3 = c2ε
2

3

3 and r2 = r3ε
1

3

3 , recall Lemma 3. Specifically, it follows that

cout
3 := −

√
2Ω0δ

2

3 + αε
1

3 δ
2

3 + O
(
ε

2

3 δ
2

3

)

in Σout
3 , as r3 = ε

1

3 δ−
1

3 . Following [KS01], we now consider the transition map Π3 : Σin
3 →

Σout
3 , with (r3, y3, c3, ε3) = (ε

1

3 δ−
1

3 , yout
3 , cout

3 , δ) ∈ Σout
3 fixed. In particular, by solving the

equation for c3 in (27) in backward time given cout
3 , we find

c3(ξ3) = cout
3 e2(ξ3−Ξ3);

here, Ξ3 denotes the transition “time” from Σin
3 to Σout

3 . Then, recalling rin
3 = ρ and rout

3 =

ε
1

3 δ−
1

3 , we deduce that Ξ3 = 1
3
ln δρ3

ε
and hence

c3(ξ3) =
(
−
√

2Ω0ε
2

3 + αε + O
(
ε

4

3

))e2ξ3

ρ2
.(33)

The assertion now follows, since ξ3 = 0 and c̃ = ρ2cin
3 in Σin

3 . �

Reverting to our original notation, we see from Lemma 5 that

c1
crit(ε) = 2

√
2 + c̃(ε) = 2

√
2 −

√
2Ω0ε

2

3 + O(ε)

on Wc. Finally, by standard center manifold theory, this expansion for c1
crit can be extended to

the full equations in (13) (at least for U > 0 small), which concludes the proof of Theorem 1.
�
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y3

ε3

y2

r3

z2

r2
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P
r

r1

ε1

z1

P
aQ

S
2
+
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O

ε̄

ȳ

z̄

Figure 5. The dynamics of the blown-up vector field on the locus S
2
+.

To summarize, we have shown that to lowest order the solution corresponding to c =
c1
crit(ε), the critical wave speed in (15), is given by the special orbit γ̄ in blown-up phase

space. Moreover, we have obtained the first-order correction to c1
crit(0) = 2

√
2.

Note, however, that in contrast to the classical planar fold problem, we obtain an entire
family of special orbits γ2 = γ2(c2) in K2, parametrized by the parameter c2. In fact, the
additional degree of freedom provided by c2 is necessary to identify the one solution of (17)
corresponding to the critical speed c1

crit. This identification cannot be achieved in K2, though;
to that end, one has to investigate the asymptotics (and, in particular, the tangency) of γ3

in K3. The fact that this tangency is irrelevant in the classical problem implies that one
requires no additional parameters there.

The dynamics of the blown-up vector field on the locus S
2
+ := S

2 ∩ {ε̄ ≥ 0} (i.e. for r̄ = 0

and c̄ = −
√

2Ω0) are roughly illustrated in Figure 5. A more detailed illustration of the
geometry of the singularly perturbed planar fold, especially with regard to the dynamics in
the individual charts, can be found in [KS01].

Remark 9. The above analysis shows that c̃(ε) = −
√

2Ω0ε
2

3 +O(ε), see Lemma 5, which in
turn gives the first-order correction to the original c1

crit(0) = 2
√

2. To compute coefficients
for the higher-order terms in c̃, one would have to determine the corresponding coefficients
in (32).

2.5. Resonance and logarithmic switchback. The eigenvalues of the linearization of
(27) at Q3 are in resonance, as is the case in [KS01]. Hence, one can apply an analysis
similar to theirs to prove the occurrence of logarithmic (switchback) terms in the transition

17



map Π3 : Σin
3 → Σout

3 for (27), where the sections Σin
3 and Σout

3 , as well as Σin are defined as
above.

Lemma 6. There holds

Y = −1

3
ε ln ε + O(ε)(34)

in Σin.

Proof. In analogy to the proof of Lemma 5, we fix (ε
1

3 δ−
1

3 , yout
3 , cout

3 , δ) ∈ Σout
3 . Moreover, we

replace y3 in (27) by ỹ3 = y3 −
√

2ε3 and then define

ŷ3 = ỹ3 − ε2
3 −

2
√

2

3
ỹ3ε3 −

2

3
c3ε3

to eliminate all quadratic terms except for the resonant term r3ε3 from the equation for y3

in (27), which gives

ŷ′
3 = 2ŷ3 − r3ε3 + O(3).

To solve the resulting equations to leading order, note that r3 = ρe−ξ3 and ε3 = ερ−3e3ξ3 ,
whence

ŷ3(ξ3) ∼ ŷout
3 e2ξ3 − ε

ρ2
ξ3e

2ξ3 .

Therefore, undoing the above transformations and reverting to the original variable y3, we
obtain

y3 ∼ ŷout
3 δ−

2

3 ε
2

3

3 +
√

2ε3 +
1

3
ε

1

3 ε
2

3

3 ln
δ

ε3

;(35)

here we have used r3ε3 = ερ−2e2ξ3 , r3 = ε
1

3 ε
− 1

3

3 , and ξ3 = 1
3
ln ε3ρ3

ε
. Now, Lemma 3 and the

proof of Lemma 4 give y3 ∼
√

2ε3 for ε3 → 0, and therefore ŷout
3 = 0. It follows that in Σin

3 ,

yin
3 =

√
2

ρ3
ε +

1

3ρ2
ε ln

δρ3

ε
+ O(2),

which implies (34) after blow-down. �

The above result is analogous to the one obtained in [KS01], up to the fact that our Y is
logarithmic in ε to leading order, which is due to our choice of c2 in K2.

Remark 10. By the definition of Y = −ε ln U , (34) implies that U ∼ ε
1

3 on Wc. On the
other hand, we know from Proposition 1 that U ∼ e−λξ for some 0 < λ <

√
2. Hence, it

follows that for c = c1
crit(ε) in (14), ξ is of the order O(− ln ε) on W c.

2.6. Concluding remarks. The case m = 1 + ε has been analyzed in [MN93] by means
of asymptotic matching. More specifically, the analysis of [MN93] is concerned with auto-
catalysis of general order, A + pB → (p + 1)B for two species A and B with p ≥ 1, in an
N -dimensional reactor. It is shown that traveling waves are generated when p lies in the
interval 1 ≤ p < 1 + 2

N
for any initial input of autocatalyst B, whereas for p ≥ 1 + 2

N
the

input must exceed a certain threshold value before such waves can develop. In particular,
in the final section of [MN93] traveling waves are studied in the limit p → 1+. To relate our
results to this aspect of their work, let us collect a few observations.
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First, consider Y , Z small; then, 1 − e−Y ∼ Y , and Z̃ ∼ −
√

2Y on Sr. Noting that
U ′

U
= Z = −

√
2 + Z̃, we find

dU

U
= −

√
2(1 +

√
Y )dξ.

Next, we make use of Y ′ ∼
√

2ε (see (17)) to obtain

U ∼ exp
[
− Y + 2

3
Y

3

2

ε

]
,(36)

which is exactly the asymptotics found in [MN93, Equation (38b)] (note that our U , Y ,
and Z correspond to their β, ζ, and φ, respectively). Hence, we have retrieved the “third
region” from [MN93], which corresponds to the slow dynamics on S close to the fold point
here. Moreover, our analysis rigorously justifies the JWKB-like asymptotics for U stated in

[MN93] (recall that by the definition of Z, U = e
R ξ

Z(s) ds).

Finally, take Y large and note that with −
√

2(1 − e−Y ) ∼ −
√

2, one has

dU

U
∼ −2

√
2dξ

on Sr. Hence, U ∼ e−2
√

2ξ, which is exactly the leading-order behavior found in [MN93,
Equations (24) and (39c)] for ξ large (up to a scaling factor of

√
2 in c1

crit). Similarly, on Sa

we would obtain Z ∼ 0, which corresponds to a merely algebraically decaying U .

3. Traveling waves for m = 2 + ε

When m = 2 + ε, the equations in (7) read

U ′ = V,

V ′ = −2U 2+ε(1 − U) − cV.
(37)

It is well-known that for m = 2, one has c2
crit(0) = 1. Moreover, in that case there is a

closed-form heteroclinic solution to (37) which can be implicitly written as

V (U) = U(U − 1),(38)

see [CCL75]. In analogy to Theorem 1, we have the following result:

Theorem 2. There exists an ε0 > 0 such that for ε ∈ (−ε0, ε0), the critical wave speed c2
crit

for (37) can be represented as a function of ε. Moreover, c2
crit(ε) is Ck-smooth, for any k ∈ N,

and is given by

c2
crit(ε) = 1 − 13

24
ε + O(ε2).(39)

This theorem establishes rigorously the result derived in [WOK01] by means of asymptotic
analysis.

19



3.1. The projectivized equations for ε = 0. In projectivized coordinates, the equations
for n = 2 become

U ′ = UZ,

Z ′ = −2e−Y U(1 − U) − cZ − Z2,

Y ′ = −εZ,

(40)

see (9). The layer problem obtained by setting ε = 0 in (40) is given by

U ′ = UZ,

Z ′ = −2e−Y0U(1 − U) − cZ − Z2,

Y = Y0.

(41)

For the following analysis, it is important to consider (40) as a system in which the three
variables U , Z, and Y are treated equally. Although Y0 = 0 is the value of Y we are
ultimately interested in by definition, we will regard Y as being independent of U until the
very end of this section. Therefore, we assume Y0 ∈ Y now, where Y ⊂ R is a bounded
set containing Y0 = 0; without loss of generality, we may take Y = (−υ, υ) with υ > 0.
For convenience of notation, we will set κ := e−Y0 in the following and consequently write
Y0 = − ln κ.

Lemma 7. For each κ > 0, and with c =
√

κ in (41), the points Q−
κ : (1, 0,− ln κ) and

Q+
κ : (0,−√

κ,− ln κ) are hyperbolic saddle fixed points, with eigenvalues given by λ1 =
√

κ,
λ2 = −2

√
κ and λ1 = −√

κ, λ2 =
√

κ, respectively. Moreover, these two equilibria are
connected by a heteroclinic orbit Γκ which is given implicitly by Z(U) =

√
κ(U − 1) and

explicitly by

(U0, Z0)(ξ) :=
(
(1 + e

√
κξ)−1,−√

κe
√

κξ(1 + e
√

κξ)−1
)
.(42)

The origin is a semi-hyperbolic fixed point of (41), with eigenvalues 0 and −√
κ and corre-

sponding eigendirections (1,−2
√

κ, 0)T and (0, 1, 0)T .

Proof. For any Y0 ∈ Y in (41), with c = e−
Y0

2 =
√

κ defined correspondingly, a direct
calculation yields the three equilibria and their respective stability types, as asserted in the
statement of the lemma.

To find explicit formulae for the corresponding heteroclinics, we replace Z by Z̃, where

Z =
√

κZ̃, and rescale ξ̃ =
√

κξ in (41) to obtain

dU

dξ̃
= UZ̃,

dZ̃

dξ̃
= −2U(1 − U) − Z̃ − Z̃2.

(43)

Now, system (43) has a heteroclinic orbit given implicitly by Z̃(U) = U − 1, see (38). By
separation of variables one finds an explicit expression for this orbit as

(U0, Z̃0)(ξ̃) :=
(
(1 + eξ̃)−1,−eξ̃(1 + eξ̃)−1

)
.

Reverting to the original variables ξ and Z, we have the desired result. �

For κ = 1, we will in the following write Q−
1 ≡ Q−, Q+

1 ≡ Q+, and Γ1 ≡ Γ, respectively.
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Remark 11. The heteroclinic orbit specified in Lemma 7 is a connection between two hy-
perbolic equilibria, as opposed to the corresponding orbit (38) for (37) which involves the
degenerate origin. The additional hyperbolicity gained by the projectivization will allow us to
treat (41) using a standard Melnikov approach.

Remark 12. In [Mur02], the equation

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
+ f1(u)

is cited as a non-trivial example of density-dependent diffusion with logistic population growth.
A transformation to traveling wave coordinates yields

U ′ = V,

UV ′ = −2U(1 − U) − cV − V 2,

which, after desingularizing time to remove the singularity at U = 0, gives just (41) (with Z

replaced by V and Y0 = 0).

3.2. Melnikov theory for fast-slow systems. To prove the persistence of the unper-
turbed heteroclinic orbit (42) for ε 6= 0 sufficiently small, we employ a slight generalization
of the Melnikov theory presented in [Rob83]. There, the focus is on fast-slow systems of the
form

x′ = f0(x,u) + εf1(x,u) + O(ε2),

u′ = εr(x,u) + O(ε2),
(44)

where x ∈ R
2, u ∈ R

d with d ∈ N arbitrary, and the prime denotes differentiation with
respect to t. Additionally, the vector field f0 is supposed to be divergence free, i.e. trDf0 = 0
holds. For ε = 0 and each u0 in some bounded set U , the equations in (44) are assumed to
have a hyperbolic saddle fixed point z(u0, 0). Moreover, Robinson imposes a so-called “saddle
connection assumption”, that is, this fixed point is connected to itself by a homoclinic orbit
x0(t,u0).

We generalize the assumptions of [Rob83] in two ways. First, we need to consider systems
of the form (44) which, for ε = 0 and for each u0 ∈ U , have two distinct hyperbolic saddle
points, z+(u0, 0) and z−(u0, 0) say, that are connected by a heteroclinic orbit x0(t,u0).
Here, it turns out that the same theory applies, with only minor modifications. Second,
the unperturbed vector field f0 in which we are interested has non-zero divergence. This
necessitates the inclusion of an additional multiplicative factor in the corresponding Melnikov
integral. The required calculations follow closely the earlier work of Salam [Sal87] on small-
amplitude perturbations of dissipative systems. For the sake of clarity, however, we will keep
the notation of [Rob83] wherever possible.

Note that for ε = 0 in (44), the above assumptions imply the existence of two normally
hyperbolic invariant sets

M+
0 =

{
(x,u)

∣∣x = z+(u, 0),u ∈ U
}

and M−
0 =

{
(x,u)

∣∣x = z−(u, 0),u ∈ U
}
,(45)

as well as of the corresponding stable and unstable manifolds W j(M+
0 ) and Wj(M−

0 ), where
j ∈ {u, s}. Without loss of generality, we assume that one branch of each of W s(M+

0 ) and
Wu(M−

0 ) coincide to form the heteroclinic manifold connecting M+
0 and M−

0 . For any
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{u = u0}

L

x(0,u0)

x
u(t, ε)

x
s(t, ε)

x(t,u0)

M+

0
M+

ε

M−
ε

M−
0

z
−(u0,0)

z
−(u0, ε)

z
+(u0,0) z

+(u0, ε)

Figure 6. Geometry of system (44).

u0 ∈ U fixed, we then retain the orbit x0 in the intersection of Ws(M+
0 ) = Wu(M−

0 ) with
{u = u0}, see Figure 6.

It follows from standard persistence theory for normally hyperbolic invariant manifolds
[Fen71, Fen79] that M+

0 and M−
0 will persist for ε 6= 0 sufficiently small as normally hyper-

bolic invariant sets

M+
ε =

{
(x,u)

∣∣x = z+(u, ε),u ∈ U
}

and M−
ε =

{
(x,u)

∣∣x = z−(u, ε),u ∈ U
}
.(46)

Similarly, W j(M+
0 ) and Wj(M−

0 ) perturb to the corresponding stable and unstable mani-
folds Wj(M+

ε ) and Wj(M−
ε ), respectively.

As in [Rob83], we define a distance function ∆ by

∆(t,u0, ε) =
[
xu(t, ε) − xs(t, ε)

]
∧ f0(x0(t))(47)

and its first derivative with respect to ε by

∆1(t,u0) =
∂

∂ε
∆(t,u0, ε)

∣∣∣
ε=0

=
[ ∂

∂ε
xu(t, ε) − ∂

∂ε
xs(t, ε)

]
∧ f0(x0(t)).(48)

Here u0 ∈ U , and the wedge product is the scalar cross product in the plane. As ∆(0,u0, 0) =
0, the function ∆1 measures the infinitesimal separation of the stable and unstable mani-
folds Ws(M+

ε ) and Wu(M−
ε ) as a function of ε. Note that xs(t, ε) and xu(t, ε) denote the

respective sections of these manifolds obtained by fixing u0.
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Proposition 4. Under the above assumptions, we have

(49) ∆1(0,u0) =

∫ ∞

−∞

{
f1(x0(t),u0) +

∂f0

∂u
(x0(t),u0)

∂u

∂ε

}
∧ f0(x0(t),u0)

× exp
[
−
∫ t

0

trDf0(x0(s),u0) ds
]
dt,

where ∂u

∂ε
satisfies

(
∂u

∂ε

)′
= r(x0(t),u0), cf. [Rob83].

Proof. Let us first define

∆j
1(t) :=

∂

∂ε
xj(t, ε) ∧ f0(x0(t))

for j ∈ {u, s}, whence ∆1(t,u0) = ∆u
1(t) − ∆s

1(t). As in [Rob83], it follows that

d

dt
∆j

1 =
{
f1 +

∂f0

∂u
· ∂u

∂ε

}
∧ f0

︸ ︷︷ ︸
=:b(t)

+ trDf0︸ ︷︷ ︸
=:a(t)

∆j
1,

with the exception that the contribution from the trace does not vanish now. Using these
abbreviations, the above equations for ∆j

1 can be solved by variation of constants, and
rearranged to give the following expressions for ∆j

1(0):

∆u
1(0) = ∆u

1(t)e
R

0

t
a(s) ds +

∫ 0

t

b(s)e
R

0

s
a(r) dr ds for t ∈ (−∞, 0],(50a)

∆s
1(0) = ∆s

1(t)e
−

R t

0
a(s) ds −

∫ t

0

b(s)e−
R s

0
a(r) dr ds for t ∈ [0,∞).(50b)

We now take the limit of t → ±∞ in (50). As in [Rob83, Lemma 3.5], we conclude that

limt→−∞ ∆u
1(t) = 0 = limt→∞ ∆s

1(t). In particular, we know that ∂x
j

∂ε
is of the order O(t),

whereas f0 → 0 exponentially fast as t → ±∞, with exponential rates given by the eigen-
values λj of Df0 at the saddle points. As in Lemma 2.1 and the preceding discussion in
[Sal87], we see that either λs < 0 ≤ trDf0 < λu or λs < trDf0 ≤ 0 < λu. Hence, in both
cases, the first terms in both equations in (50) vanish exponentially, since λs − trDf0 < 0
and λu − trDf0 > 0. As the integrands in the two resulting expressions for ∆j

1(0), j ∈ {u, s}
are the same, we can recombine (50) in the limit t → ±∞ into the desired form (49), which
concludes the proof. �

3.3. Proof of Theorem 2. We will apply the Melnikov theory (Proposition 4) presented
in the previous section to system (40). We begin by showing that the reduced equations in
(41) satisfy the hypotheses of the theory.

Note that the fast variables x in Robinson’s notation correspond to our (U,Z) in (40),
whereas the slow parameter u is given by Y in our case. Moreover, we rewrite the second
equation from (40) in terms of c̃ := c −√

κ to obtain

Z ′ = −2κU(1 − U) − (
√

κ + c̃)Z − Z2.(51)

Here κ = e−Y , as before, and we only assume c̃ = O(1) as ε → 0 for the moment; the exact
nature of the ε-dependence of c̃ will be determined through the following analysis. In the
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notation of [Rob83], we then have

f0(U,Z, Y ) =
(
UZ,−2e−Y U(1 − U) − e−

Y
2 Z − Z2

)T
,(52)

f1(U,Z, Y ) = (0,−c̃Z)T ,(53)

r(U,Z, Y ) = −Z.(54)

In contrast to the assumptions made in [Rob83], however, the vector field in (40) is not
divergence free, as

Df0 =

[
Z U

−2κ(1 − 2U) −√
κ − 2Z

]
(55)

and trDf0 = −√
κ − Z 6≡ 0. Hence, we make use of Proposition 4 above to account for the

additional terms arising from trDf0.
When ε 6= 0, there is no equilibrium for Z = −√

κ in (40). Still, reverting to our original
notation and recalling that Y0 varies in Y ⊂ R, it follows from standard persistence theory
for normally hyperbolic invariant manifolds that the two curves

L+
0 =

⋃

Y0∈Y

{(
0,−e−

Y0

2 , Y0

)}
and L−

0 =
⋃

Y0∈Y
{(1, 0, Y0)}(56)

persist for ε sufficiently small as curves L+
ε and L−

ε , say. Moreover, from Lemma 7 we con-
clude that there exist two-dimensional stable and unstable manifolds W s(L+

0 ) and Wu(L−
0 ),

respectively, which will perturb to the corresponding manifolds W s(L+
ε ) and Wu(L−

ε ) by
Fenichel theory [Fen79]. Note that for ε = 0, the two branches of W s(L+

0 ) and Wu(L−
0 )

restricted to U ∈ [0, 1] coincide, which will be of importance later on, cf. Figure 7.
To prove Theorem 2, i.e. to establish the smoothness of c2

crit(ε) and to derive its leading-
order behavior, we define the distance function ∆ to be a function of both ε and c̃, and then
compute the leading-order expansion for this new ∆. To that end, let

∆(ξ, κ, ε, c̃) =
[
(U,Z)u(ξ, ε, c̃) − (U,Z)s(ξ, ε, c̃)

]
∧
(
UZ,−2κU(1 − U) −√

κZ − Z2
)T

,

(57)

where ∆ measures the distance between Ws(L+
ε ) and Wu(L−

ε ) along the normal n to the
unperturbed heteroclinic manifold formed by the coincidence of one branch of each of W s(L+

0 )
and Wu(L−

0 ), see Figure 8. Also, we define

∆10(ξ, κ) :=
∂

∂ε
∆(ξ, κ, ε, c̃)

∣∣∣
(ε,c̃)=(0,0)

and ∆01(ξ, κ) :=
∂

∂c̃
∆(ξ, κ, ε, c̃)

∣∣∣
(ε,c̃)=(0,0)

;

here κ = e−Y0 , as before.
The above definition of ∆ will allow for a rigorous justification of the regular expansion

of c2
crit(ε) in powers of ε derived in [WOK01]:

Proof of Theorem 2. The function ∆ defined in (57) is Ck-smooth, for any k ∈ N, by defini-
tion; moreover, ∆(0, κ, 0, 0) = 0. Hence, it follows that to leading order

∆(0, κ, ε, c̃) = ∆10(0, κ) ε + ∆01(0, κ) c̃ + O(2)

for ε and c̃ sufficiently small. Here, O(2) denotes terms of second order and upwards in ε and
c̃. We now compute ∆10 and ∆01. All expressions that follow are evaluated at (ε, c̃) = (0, 0).
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L+

0

L−
0

Ws(L+

0 ) = Wu(L−
0 )

Q−

Q+

Γ : {Z = U − 1}
Q+

κ

Q−
κ

Γκ : {Z =
√

κ(U − 1)}

U

Y

Z

Figure 7. Geometry of (41) for Y0 ∈ Y .

{U = −Z}

(U,Z)u(ξ, ε, c̃)

Q−

Q+ Γ : {Z = U − 1}

U

Z

(U,Z)s(ξ, ε, c̃)

Figure 8. Projection of (41) onto the plane {Y = 0}.
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For ∆10, one can retrace the arguments in the proof of Proposition 4 to obtain

(58) ∆10(0, κ) = −
∫ ∞

−∞

(
0, 2κU(1 − U)

)T
ln U

∧
(
UZ,−2κU(1 − U) −√

κZ − Z2
)T

exp
[ ∫ ξ

0

(√
κ + Z(s)

)
ds
]
dξ
∣∣∣
(U,Z)=(U0,Z0)

(with f0 and Df0 given by (52) and (55), respectively). Here, (U0, Z0) is again defined as in
(42), and we have made use of Y = −ε ln U , whence

∂Y

∂ε
(ξ)
∣∣∣
ε=0

= − ln U0(ξ).

To calculate (58), we first carry out the inner integration:

Lemma 8. There holds

exp
[ ∫ ξ

0

(√
κ + Z0(s)

)
ds
]

= − 2√
κ
Z0(ξ).

Proof. The result follows from (42) and the definition of Z, as
∫ ξ

0

(√
κ + Z0(s)

)
ds =

√
κξ +

∫ ξ

0

U ′
0(s)

U0(s)
ds =

√
κξ + ln U0(s)

∣∣∣
ξ

0
=

√
κξ + ln

2

1 + e
√

κξ
.

�

Making use of the above lemma, as well as of Z =
√

κ(U − 1) and
√

κU(U − 1) = dU
dξ

, we

can rewrite (58) as

(59) ∆10(0, κ) = −4
√

κ

∫ ∞

−∞
U2(1 − U)Z2 ln U dξ = 4κ

∫ ∞

−∞
U(U − 1)2 ln U

dU

dξ
dξ

= 4κ

∫ 0

1

U(U − 1)2 ln U dU =
13

36
κ.

The argument for ∆01 goes as follows: Define

∆j
01(ξ) :=

∂

∂c̃
(U,Z)j ∧

(
UZ,−2κU(1 − U) −√

κZ − Z2
)T

for j ∈ {u, s},

and compute d
dξ

∆j
01 as in the proof of Proposition 4 to obtain

d

dξ
∆j

01 = (0,−Z)T ∧
(
UZ,−2κU(1 − U) −√

κZ − Z2
)T − (

√
κ + Z) ∆j

01;

here, the term (0,−Z)T is introduced by taking the derivatives of U ′ = UZ and (51) with
respect to c̃. After integration, one has

∆u
01(0) = ∆u

01(ξ) exp
[
−
∫ 0

ξ

(√
κ + Z(s)

)
ds
]

+

∫ 0

ξ

UZ2 exp
[
−
∫ 0

s

(√
κ + Z(r)

)
dr
]
ds

for ξ ∈ (−∞, 0] and

∆s
01(0) = ∆s

01(ξ) exp
[ ∫ ξ

0

(√
κ + Z(s)

)
ds
]
−
∫ ξ

0

UZ2 exp
[ ∫ s

0

(√
κ + Z(r)

)
dr
]
ds
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for ξ ∈ [0,∞), respectively. Passing to the limit of ξ → ±∞, we note that the first terms
in both the above expressions vanish, as in the proof of Proposition 4. In fact, we now
even have that ∂

∂c̃
(U,Z)j is bounded, i.e. O(1), as in the standard time-dependence case.

Referring to Lemma 8 again, we get

∆01(0, κ) = − 2√
κ

∫ ∞

−∞
UZ3 dξ = −2

√
κ

∫ 0

1

(U − 1)2 dU =
2

3

√
κ.(60)

In sum, combining (59) and (60), we find

∆(0, κ, ε, c̃) =
13

36
κε +

2

3

√
κc̃ + O(2);(61)

moreover, as ∆(0, κ, 0, 0) = 0 and ∂
∂c̃

∆(0, κ, 0, 0) = ∆01(0, κ) 6= 0, by the Implicit Function

Theorem there exists a Ck-smooth function c̃(ε) such that ∆(0, κ, ε, c̃(ε)) = 0 for ε 6= 0
sufficiently small, which implies the existence of a solution to (40) with c2

crit(ε) =
√

κ + c̃(ε).
Furthermore, from (61) we obtain that ∆ = 0 is equivalent to c̃(ε) = − 13

24

√
κε+O(2). Hence,

for Y0 = 0 (
√

κ = 1), we have

c2
crit(ε) = 1 + c̃(ε) = 1 − 13

24
ε + O(ε2),

which completes the proof of Theorem 2. �

The proof of Theorem 2 implies the following: Not only will the orbit of (40) corresponding
to Y = 0 persist for ε 6= 0 sufficiently small, but we have persistence of an entire two-
dimensional surface of orbits obtained by varying Y0 ∈ Y in (40). To put it in a different
way: Just as Ws(L+

0 ) and Wu(L−
0 ) coincide for U ∈ [0, 1] and ε = 0, so do the perturbed

manifolds Ws(L+
ε ) and Wu(L−

ε ) for 0 < |ε| � 1. The reason is that by picking c̃ for Y = 0

above, we simultaneously obtain the correct first-order correction to c = e−
Y
2 for any Y ∈ Y .

Due to the fact that we are dealing with a simple zero of ∆ (as ∆01 6= 0), and since the
equations in (40) are autonomous, the above claim is actually true to any order in ε.

Indeed, this should come as no surprise: The lifting of the two-dimensional system (37)
in (U, V )-space to the equations in (40) in three-dimensional (U,Z, Y )-space is somewhat
artificial. We are really only interested in Y = 0 in (40), but have to allow for an entire
(open) set Y of possible parameter values. Alternatively, one can think of Y as a one-
dimensional parameter space for (40) foliated by a family of differently scaled copies of what
is essentially one set of equations, where we pick the copy corresponding to Y = 0.

Remark 13. In [Rob83], it is required that ∂Y
∂ε

(0) = 0. In our case, however, there holds
∂Y
∂ε

(0) = ln 2, the reason being that we are dealing with a heteroclinic instead of with a
symmetric homoclinic orbit here.

Remark 14. As we know from Lemma 7 that U ∼ e−
√

κξ (U ∼ 1 − e
√

κξ) as ξ → ∞
(ξ → −∞), it follows that Y ∼ ε

√
κξ (Y ∼ εe

√
κξ) then. Thus, in the former case, we are

exactly within the framework of [Rob83], whereas in the latter case, we fare even better.

Remark 15. We now briefly return to the problem for m = 1 + ε, studied in Section 2, to
show why the methods of this section do not seem to apply in that case. Even if the fixed
point (U,Z) = (0,−

√
2) is not a hyperbolic saddle for n = 1, one might still hope that the

results in [Rob83] are applicable. The fact that no explicit solutions to (11) seem to be known
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for ε = 0 should pose no difficulty, either, as one could still derive qualitative estimates on
the corresponding Melnikov integrals.

First, we remark that the vector field in (13) again is not divergence free: Writing

f0(U,Z, Y ) =
(
UZ,−2e−Y (1 − U) − 2

√
2Z − Z2

)T
,

we see that trDf0 = −2
√

2 − Z. Retracing the proof of Proposition 4, however, it turns out
that in (50),

∆s
1(t) exp

[
−
∫ t

0

trDf0(s) ds
]

= O(t) → ∞ as t → ∞

now, which is due to trDf0 → −
√

2 for Z ∼ −
√

2. Therefore, λs − trDf0 → 0 when t → ∞,
and the statement of Proposition 4 will no longer hold.

This observation can be verified directly, as well: Given that Z = U ′

U
, we have

exp
[
−
∫ ξ

0

trDf0 ds
]

= e2
√

2ξ exp
[ ∫ U(ξ)

U(0)

dU

U

]
∝ e2

√
2ξU(ξ) → ∞ for ξ → ∞,

since U(ξ) ∼ e−
√

2ξ then, which implies that the integral in (49) will diverge. Hence, the
methods employed here do not appear to be applicable to the problem analyzed in Section 2.

Remark 16. We chose to present the analysis of the case m = 2+ε in Section 3 in the same
framework used for the case m = 1 + ε in the previous section, namely, in the framework of
system (9), which involves both the projectivized coordinate Z and the embedding variable Y .
This choice was made both to keep the presentation uniform and to bring out the geometry
of the problem. The case n = 2 can probably also be analyzed using a more direct approach
involving the Lyapunov-Schmidt method and the Melnikov condition associated to it, since
the vector field in (7) is C1-smooth jointly in U and ε when 0 < |ε| � 1. See [CL90], where
this approach was first developed for determining the existence of homoclinic and heteroclinic
orbits, as well as of periodic orbits, in systems with fixed points that have a zero eigenvalue.
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