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Abstract. The present work is a continuation of the geometric singular per-

turbation analysis of the Lagerstrom model problem which was commenced

in [PS04]. We establish the same framework here, reinterpreting Lagerstrom’s

equation as a dynamical system which is subsequently analyzed by means of

methods from dynamical systems theory as well as of the blow-up technique.
We show how rigorous asymptotic expansions for the Lagerstrom problem can
be obtained using geometric methods, thereby establishing a connection to the

method of matched asymptotic expansions. We explain the structure of these
expansions and demonstrate that the occurrence of the well-known logarithmic

(switchback) terms therein is caused by a resonance phenomenon.

1. Introduction

Singular perturbation problems in general and singularly perturbed differential
equations in particular are characterized by the presence of at least two fundamen-
tally different scales. The existence of these independent scales gives one a small
parameter and thus permits one to use perturbation methods. The aim of these
methods is to obtain uniformly valid approximations. It is, however, the essence
of a singular perturbation problem that a straightforward perturbation fails to be
uniformly valid. Indeed, it is typical of singular perturbation techniques that one
works with approximations which are valid in restricted domains only.

Traditionally, this type of problems has been treated using the method of matched
asymptotic expansions: one proceeds by constructing two (or more) asymptotic
expansions which together cover the entire domain, although neither is uniformly
valid there. To obtain a uniformly valid approximation on the entire domain,
these individual expansions have to be matched; the essence of matching lies in
comparing two expansions on a suitable domain of overlap. An excellent account
of the fundamental notions and concepts in perturbation theory is given in [LC72].

More recently, an alternative approach to such problems, known as geometric sin-
gular perturbation theory, has emerged (see [Fen79] or [Jon95] for details and refer-
ences). This approach, which in general requires certain hyperbolicity assumptions,
is based on methods from the theory of dynamical systems, in particular on invari-
ant manifold theory.

A classical singular perturbation problem from fluid dynamics occurs in the as-
ymptotic treatment of viscous flow past a solid at low Reynolds number, see e.g.
[vD75]. Though first attempts at clarification date back to [Sto51], it was not until
a century later that the conceptual structure of the problem was at last resolved in
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[Kap57, KL57, PP57]. To illustrate the mathematical ideas and techniques used by
Kaplun in his asymptotic treatment of low Reynolds number flow, [Lag66] proposed
an analytically rather simple model problem which was subsequently analyzed by
Lagerstrom himself as well as by numerous other workers, see [Lag88] and the
references therein.

Much of the interest in Lagerstrom’s model problem has been directed at the de-
velopment of matched asymptotic expansions to describe its solutions, see e.g.
[KC81, Lag88], or [HTB90]. Our goal is to show how such expansions can be
obtained using geometric methods, thereby establishing a connection between the
two approaches. As observed already by [Fen79], for layer-type problems finding
outer solutions is equivalent to computing expansions of slow manifolds. However,
the well-developed geometric theory is not applicable at points where hyperbolicity
is lost. In several instances it has been possible to extend the geometric approach
past such points using the blow-up technique. Blow-up is essentially a sophisticated
rescaling which allows one to analyze the dynamics near a singularity; details can be
found in [DR96]. In particular, blow-up has been employed by [KS01] and [vGKS]
to give a detailed geometric analysis of the singularly perturbed planar fold. Apart
from deriving asymptotic expansions of slow manifolds continued beyond the fold
point, they also explained the structure of these expansions and gave an algorithm
for the computation of their coefficients. Our line of attack is very similar to theirs.

A distinctive feature of asymptotic expansions for the singularly perturbed pla-
nar fold as well as for Lagerstrom’s model is the occurrence of logarithmic terms.
The nature of the expansions in these and similar problems is both complicated
and unexpected, as the governing equations typically give no immediate hint of the
presence of such terms; indeed, this is why they are often so tricky to obtain. Tradi-
tionally, logarithmic terms have been accounted for under the notions of switchback
and integrated effects. We show that the occurrence of logarithms in the expan-
sions for Lagerstrom’s model equation is caused by a resonance phenomenon. At
this point we conjecture that similar resonance phenomena are responsible for the
occurrence of logarithmic terms in many other singular perturbation problems, at
least after reinterpretation in a dynamical systems framework.

This article is organized as follows: Section 2 contains some background information
on the Lagerstrom model problem as well as on the blow-up transformation used in
our analysis; in Section 3, we derive asymptotic expansions for Lagerstrom’s model,
whereas Section 4 briefly indicates how these expansions are related to the classical
ones known from the literature. This work should be regarded as a continuation of
[PS04].

2. Background information

2.1. Lagerstrom’s model equation. In its simplest form, Lagerstrom’s model
equation is given by the non-autonomous second-order boundary value problem

ü +
n − 1

x
u̇ + uu̇ = 0,(1a)

u(ε) = 0, u(∞) = 1,(1b)
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with n ∈ N, 0 < ε ≤ x ≤ ∞, and the overdot denoting differentiation with respect
to x. Equivalently, by introducing the rescaling

(2) ξ =
x

ε
,

one can write (1) as

u′′ +
n − 1

ξ
u′ + εuu′ = 0,(3a)

u(1) = 0, u(∞) = 1,(3b)

with 1 ≤ ξ ≤ ∞ and the prime denoting differentiation with respect to ξ.

Originally, (1) and (3) are the versions of the model which was first introduced in
[Lag66] and [KL57] to elucidate certain basic ideas used in the asymptotic treatment
of viscous flow past a solid at low Reynolds number. In the following, we will only
consider the cases n = 2 and n = 3, which represent the physically relevant settings
of flow in two and three dimensions, respectively. For more background information
and further references on Lagerstrom’s model equation, we refer to [PS04].

As in [PS04], replacing ξ ∈ [1,∞) by η := ξ−1 ∈ (0, 1], appending the (trivial)
equation ε′ = 0, and setting u′ = v yields

u′ = v,

v′ = −(n − 1)ηv − εuv,

η′ = −η2,

ε′ = 0

(4)

in extended phase space, with boundary conditions given by

(5) u(1) = 0, η(1) = 1, u(∞) = 1;

obviously, (5) means that v(∞) = 0 for the solution to (4), whereas v(1) still is to
be determined.

For ε > 0 fixed, let Vε be defined by

(6) Vε :=
{

(0, v, 1)
∣

∣ v ∈ [v, v]
}

,

where 0 ≤ v < v < ∞, and let the point Q be given by Q := (1, 0, 0) (see again
[PS04]). Note that Vε and Q correspond to the inner and outer boundary conditions
in (3b), respectively. The saturation of Vε under the flow induced by (4) we denote
by Mε. Correspondingly, the manifolds V and M in extended phase space are
defined by V :=

⋃

ε∈[0,ε0]
Vε×{ε} and M :=

⋃

ε∈[0,ε0]
Mε×{ε}; here, the parameter

ε is not fixed, but is allowed to vary in some interval [0, ε0] with ε0 > 0 small.

The equilibria of (4) are located on the line ` :=
{

(u, 0, 0, ε)
∣

∣ u ∈ R
+, ε ∈ [0, ε0]

}

;
obviously, Q ∈ `. For ε > 0, the one-dimensional strongly stable manifold of Q,
which we call Wss

ε , can be computed explicitly due to the simple structure of (4)
for η = 0, whence e.g.

(7) v(u) =
ε

2

(

1 − u2
)

;

here we have used v(1) = 0. The following result can be found in [PS04]:

Proposition 2.1 ([PS04]). Let k ∈ N be arbitrary, and let ε > 0.

(1) There exists an attracting two-dimensional center manifold W c
ε of (4) which

is given by {v = 0}.
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Figure 1. Geometry of system (4) for ε > 0 fixed.

(2) For |u−1|, v, and η sufficiently small, there is a stable invariant Ck-smooth
foliation Fs

ε with base Wc
ε and one-dimensional Ck-smooth fibers.

Given Proposition 2.1, one can define the stable manifold Ws
ε of Q as

(8) Ws
ε :=

⋃

P∈Υ

F s
ε (P ),

where Υ :=
{

(1, 0, η)
∣

∣ 0 ≤ η � 1
}

, i.e., as a union of fibers F s
ε ∈ Fs

ε with base
points in the weakly stable orbit Υ. The situation is illustrated in Figure 1.

The main result in [PS04] is the following theorem on the existence and (local)
uniqueness of solutions to (4) (and, consequently, to (1)):

Theorem 2.2 ([PS04]). For ε ∈ (0, ε0] with ε0 > 0 sufficiently small and n = 2, 3,
there exists a locally unique solution to (4),(5).

The proof is constructive, and is performed by tracking Mε through phase space
and showing that its intersection with Ws

ε is transverse under the resulting flow. As
we are only interested in small values of ε, we took a perturbational approach: given
transversality for ε = 0, we concluded that the intersection remained transverse for
ε > 0 small. On a technical level, the tracking was done along singular orbits of (4)
connecting V0 to Q. These orbits, which we denoted by Γ, were used as templates
for orbits of the full problem obtained for ε > 0. However, due to the non-hyperbolic
character of the problem for ε = 0, we could not deduce the existence of a stable
manifold Ws

0 from standard invariant manifold theory. It was shown in [PS04],
however, that Wss and Ws can still be smoothly defined down to ε = 0 by using
blow-up techniques.
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Figure 2. The blow-up transformation Φ.

2.2. The blow-up transformation. The (polar) blow-up transformation Φ in-
troduced in [PS04] to analyze the dynamics of (4) near ` is given by

(9) Φ :

{

R × B → R
4,

(ū, v̄, η̄, ε̄, r̄) 7→ (ū, r̄v̄, r̄η̄, r̄ε̄),

where B := S
2 × R and S

2 denotes the two-sphere in R
3, i.e., S

2 =
{

(v̄, η̄, ε̄)
∣

∣ v̄2 +

η̄2 + ε̄2 = 1
}

. Note that obviously Φ−1(`) = R × S
2 × {0}, which is the blown-up

locus obtained by setting r̄ = 0. Moreover, for r̄ 6= 0, i.e., away from Φ−1(`), Φ is
a C∞-diffeomorphism. We will only be interested in r̄ ∈ [0, r0] with r0 > 0 small.

The reason for introducing (9) is that degenerate equilibria, such as those in `,
are often amenable to analysis by means of blow-up techniques. The blow-up is a
(singular) coordinate transformation whereby the degenerate equilibrium is blown
up to some n-sphere. Transverse to the sphere and even on the sphere itself one often
gains enough hyperbolicity to allow a complete analysis by standard techniques.
For a general discussion of blow-up we refer to [DR91] and to [Dum93], whereas
applications to singular perturbation problems can be found in [DS95] and [DR96]
as well as in [KS01] and [vGKS].

The vector field on R × B, which is induced by the vector field corresponding to
(4), is most conveniently studied by introducing different charts for the manifold
R × B. In the following, we will be concerned only with two charts K1 and K2

corresponding to η̄ > 0 and ε̄ > 0 in (9), respectively, see Figure 2. The reason
is that these two charts correspond precisely to the inner and outer regions in the
classical approach, see [PS04].

The directional blow-up in the direction of positive η (i.e., in K1) is given by

(10) Φ1 :

{

R
4 → R

4,

(u1, v1, r1, ε1) 7→ (u1, r1v1, r1, r1ε1),
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whence

(11) u = u1, v = r1v1, η = r1, ε = r1ε1.

After transformation to K1 and desingularization, the equations in (4) have the
following form:

u′
1 = v1,

v′
1 = (2 − n)v1 − ε1u1v1,

r′1 = −r1,

ε′1 = ε1.

(12)

The desingularization, which is necessary to obtain a non-trivial flow for r1 = 0,
is performed by dividing out the common factor r1 on both sides of the equations;
it corresponds to a rescaling of time, leaving the phase portrait unchanged. The
equilibria of (12) are easily seen to lie in `1 :=

{

(u1, 0, 0, 0)
∣

∣ u1 ∈ R
+
}

. A simple
computation shows that the corresponding eigenvalues are given by −1, 0, and 1
both for n = 3 and for n = 2; these eigenvalues obviously are in resonance. In fact,
it is these resonances in K1 which are responsible for the occurrence of logarithmic
switchback terms in the Lagerstrom model, as will become clear later on.

Similarly, in chart K2, (9) is given by

(13) Φ2 :

{

R
4 → R

4,

(u2, v2, η2, r2) 7→ (u2, r2v2, r2η2, r2)

respectively

(14) u = u2, v = r2v2, η = r2η2, ε = r2,

which is simply an ε-dependent rescaling of the original variables, since r2 = ε.
Desingularizing once again, we obtain for the blown-up vector field in K2

u′
2 = v2,

v′
2 = (1 − n)η2v2 − u2v2,

η′
2 = −η2

2 ,

r′2 = 0;

(15)

these equations are simple insofar as r2 occurs only as a parameter. The equilibria
of (15) are given by `2 :=

{

(u2, 0, 0, r2)
∣

∣u2 ∈ R
+, r2 ∈ [0, r0]

}

.

The following observation, which is valid in both cases alike, is the starting point
of our analysis:

Proposition 2.3 ([PS04]). Let k ∈ N be arbitrary.

(1) There exists an attracting three-dimensional center manifold W c
2 of (15)

which is given by {v2 = 0}.
(2) For |u2 − 1|, v2, η2, and r2 sufficiently small, there is a stable invariant

Ck-smooth foliation Fs
2 with base Wc

2 and one-dimensional Ck-smooth fibers.

Let Wss
2 denote the fiber F s

2 (Q2) ∈ Fs
2 with base point Q2 := (1, 0, 0, 0); note that

for any r2 = ε ∈ [0, ε0] fixed, Q2 and Wss
2 correspond to the original Q and its

stable fiber Wss
ε , respectively.
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Remark 1. Just as was the case with Wss
ε , Wss

2 also is known explicitly: given
v2(1) = 0, one obtains from (15) with η2 = 0 that

(16) v2(u2) =
1

2

(

1 − u2
2

)

;

hence, Wss
2 is independent of both ε and n. �

As in [PS04], let the orbit γ2 be defined by

(17) γ2(ξ2) :=
{(

1, 0, ξ−1
2 , 0

) ∣

∣ ξ2 ∈ (0,∞)
}

,

and let Γ2 := γ2 ∪ {Q2}; note that γ2(ξ2) → Q2 as ξ2 → ∞. With Proposition 2.3
it then follows:

Proposition 2.4 ([PS04]). The manifold Ws
2 defined by

(18) Ws
2 :=

⋃

P2∈Γ2

F s
2 (P2)

is an invariant, Ck-smooth manifold, namely the stable manifold of Q2.

Tracking the manifold Ws
2 along the singular orbit Γ to the inner boundary in K1

defines a global manifold W
s

which determines the solution to (4),(5) as given by
Theorem 2.2, see Figure 3.

The relation between charts K1 and K2 on their overlap domain can be described
as follows:

Lemma 2.5 ([PS04]). Let κ12 denote the change of coordinates from K1 to K2,
and let κ21 = κ−1

12 be its inverse. Then, κ12 is given by

(19) u2 = u1, v2 = v1ε
−1
1 , η2 = ε−1

1 , r2 = r1ε1,

and κ21 is given by

(20) u1 = u2, v1 = v2η
−1
2 , r1 = r2η2, ε1 = η−1

2 .

Remark 2 (Notation). Let us introduce the following notation: for any object �

in the original setting, let � denote the corresponding object in the blow-up; in
charts Ki, i = 1, 2, the same object will appear as �i when necessary. �

Moreover, as in [PS04] we define the sections Σin
1 , Σout

1 , and Σin
2 , where

Σin
1 :=

{

(u1, v1, r1, ε1)
∣

∣u1 ≥ 0, v1 ≥ 0, ε1 ≥ 0, r1 = ρ
}

,(21a)

Σout
1 :=

{

(u1, v1, r1, ε1)
∣

∣u1 ≥ 0, v1 ≥ 0, r1 ≥ 0, ε1 = δ
}

,(21b)

Σin
2 :=

{

(u2, v2, η2, r2)
∣

∣u2 ≥ 0, v2 ≥ 0, r2 ≥ 0, η2 = δ−1
}

(21c)

with 0 < ρ, δ � 1 arbitrary, but fixed; obviously κ12

(

Σout
1

)

= Σin
2 .

3. Rigorous asymptotic expansions

We now set out to derive asymptotic expansions for the function v1ε
:= v1

∣

∣

ξ=1
as

defined by the unique solution to (4),(5) given in Theorem 2.2, see Figure 4. It is
well-known that to leading order, the method of matched asymptotic expansions
gives

(22) v1ε
= 1 − ε ln ε − (γ + 1)ε + O(ε2)
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Figure 3. Geometry of the blown-up system for (a) n = 3 and
(b) n = 2.
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V1 V1

P1P1
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Figure 4. v1ε
for (a) n = 3 and (b) n = 2.

for n = 3 and

(23) v1ε
= −

1

ln ε
+

γ

(ln ε)2
+ O

(

1

(ln ε)3

)

for n = 2, respectively, see e.g. [Lag88]. Classically, the somewhat surprising
occurrence of logarithmic terms in these expansions has been accounted for under
the notion of switchback; we will show that these terms are in fact due to a resonance
phenomenon. Incidentally, note that v1ε

equals du
dξ

∣

∣

ξ=1
, the analogue of the drag on

the solid, which is a quantity of considerable interest in the original fluid dynamical
problem.

Our approach is rigorous in the sense that the expansions we compute are approx-
imations to a well-defined geometric object, namely, to the invariant manifold W

s

introduced in the previous section. Roughly speaking, our strategy is the following:
we begin by computing expansions for Ws

2 in K2; these expansions, when translated
to K1 and evaluated at the inner boundary there, will provide us with expansions
for v1ε

. We again distinguish between n = 3 and n = 2 here, the case n = 3 being
considerably simpler.

Remark 3. This strategy, which is slightly different from the strategy applied
in [PS04], is somewhat more efficient as far as computing expansions for v1ε

is
concerned. Later on, we will indicate how asymptotic solution expansions for (4),(5)
can be obtained. �

The complicated structure of the expansions in K1 arises as W
s

passes near the line
of equilibria `1 in K1. As indicated above, the logarithmic terms in (22) respectively
(23) are due to the resonant eigenvalues −1, 0, and 1 which occur in K1, see [PS04].
We now present a simple argument to substantiate our claim: for n = 3, consider
the equations in K1 given by (12). After introducing the new variable ṽ1 = eξ1v1,
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one obtains for the first two equations in (12)

u′
1 = e−ξ1 ṽ1,

ṽ′
1 = −ε1u1ṽ1.

(24)

Integration of (24) yields1

u1(ξ1) = u10
+

∫ ξ1

0

e−ξ′

ṽ1(ξ
′) dξ′,

ṽ1(ξ1) = v10
− ε10

∫ ξ1

0

eξ′

u1(ξ
′)ṽ1(ξ

′) dξ′,

(25)

where we have used ε1 = ε10
eξ1 and u10

, v10
, and ε10

are constants. Note that near
`1, v1 and ε1 are small, which implies ṽ1 = O(1) there. Hence, a Picard iteration

scheme can be applied to (25), with the starting point given by
(

u
(0)
1 , ṽ

(0)
1

)

=
(u10

, v10
). In fact, one easily sees that (25) defines a contraction operator for u1 and

ṽ1 in L∞
[

0, ln ε1

ε10

]

, which ensures convergence of the scheme.2 A straightforward

computation gives

u
(1)
1 = u10

+ v10

(

1 − e−ξ1

)

,(26a)

ṽ
(1)
1 = v10

+ ε10
u10

v10

(

1 − eξ1

)

,(26b)

u
(2)
1 = u

(1)
1 + ε10

u10
v10

(

1 − ξ1 − e−ξ1

)

,(26c)

ṽ
(2)
1 = ṽ

(1)
1 + ε10

v2
10

(

1 + ξ1 − eξ1

)

+
1

2
ε10

u2
10

v10

(

1 − 2eξ1 + e2ξ1

)

+
1

2
ε10

u10
v2
10

(

3 + 2ξ1 − 4eξ1 + e2ξ1

)

(26d)

for the first two iterates in (25). As ξ1 = ln ε1

ε10

, this then generates a logarithmic

term in ε1 after rewriting (26c) as a function of ε1. Similarly, the products of powers
of ξ1 and eξ1 which occur for higher iterates in (25) will give rise to products of
powers of ln ε1 and ε1 after those iterates have been rewritten in terms of ε1.

In fact, it is thus possible to obtain successive approximations to the transition
map Π from Σin

1 to Σout
1 for (12), see [KS01]; the above computation gives the

leading order behaviour of Π. Note that it is precisely the resonant terms in (12)
which cannot be eliminated by a normal form transformation and which preclude
the existence of a linearizing transformation for (12) proper, see e.g. [CLW94].

1Without loss of generality, we set ξ10
= 0 here.

2Incidentally, the introduction of ṽ1 in (12) is required for the proof of contractivity of (25).



RIGOROUS ASYMPTOTIC EXPANSIONS FOR LAGERSTROM’S MODEL EQUATION 11

3.1. The case n = 3.

3.1.1. Expansions in chart K2. As the equations in K2 are completely independent
of r2, we can simply omit the last equation in (15), which leaves us with the
essentially three-dimensional system

u′
2 = v2,

v′
2 = −2η2v2 − u2v2,

η′
2 = −η2

2 .

(27)

Remark 4. In contrast to what is usually done in the literature, we do not intend
to derive asymptotic expansions for the solutions to (4) here, but rather for the
manifold Ws as defined in Section 2. As the solutions to (4),(5) clearly do depend
on ε, however, any ansatz aimed at obtaining solution expansions would of course
have to take into account this dependence on ε. Note that in our approach, ε enters
only in chart K1, see below. �

Given Proposition 2.3, we can make an ansatz for the expansion of Ws
2 of the form

(28) v2(u2, η2) =

∞
∑

j=0

Cj(η2)(u2 − 1)j ,

where

(29) Cj(η2) :=
1

j!

∂j

∂u
j
2

v2(u2, η2)
∣

∣

∣

u2=1
,

see [vGKS]. Hence,

(30)

∣

∣

∣

∣

∣

∣

v2(u2, η2) −

N
∑

j=0

Cj(η2)(u2 − 1)j

∣

∣

∣

∣

∣

∣

= O
(

(u2 − 1)N+1
)

for any N ∈ N, and the above estimate is uniform for η2 bounded.

Remark 5. An equally valid ansatz would be to set

(31) u2(v2, η2) =
∞
∑

j=0

Dj(η2)v
j
2,

with

(32) Dj(η2) :=
1

j!

∂j

∂v
j
2

u2(v2, η2)
∣

∣

∣

v2=0
.

However, the reason for considering (28) and not (31) is that ultimately we are
interested in deriving an expansion for v1ε

. Given Lemma 2.5, it is therefore the
ansatz in (28) we have to use. �

Rewriting (27) with η2 as the independent variable and omitting the subscript 2,
we obtain

du

dη
= −

v

η2
,(33a)

dv

dη
=

2

η
v +

u − 1

η2
v +

v

η2
;(33b)



12 NIKOLA POPOVIĆ AND PETER SZMOLYAN

inserting (28) into (33b) yields

(34)
∞
∑

j=0

[

dCj

dη
(u − 1)j − Cjj(u − 1)j−1

(

1

η2

∞
∑

k=0

Ck(u − 1)k

)]

=
2

η

∞
∑

j=0

Cj(u − 1)j +
1

η2

∞
∑

j=0

Cj(u − 1)j+1 +
1

η2

∞
∑

j=0

Cj(u − 1)j ,

where we have used (33a). Collecting powers of u − 1 in (34) gives a recursive
sequence of differential equations for the coefficient functions in (28),

C ′
1 −

C1

η

(

C1

η
+

1

η
+ 2

)

= 0,(35a)

C ′
j −

Cj

η

(

2 +
1

η

)

−
j + 1

η2
C1Cj =

1

η2
Cj−1 +

1

η2

∑

k+l=j+1
k,l≥2

kCkCl, j ≥ 2,(35b)

with initial conditions

(36) C1(0) = −1, C2(0) = −
1

2
, Cj(0) = 0, j ≥ 3;

note that C0 ≡ 0 due to v(1) = 0. (36) is obtained from Remark 1, as Wss is given
by

(37) v(u, 0) = −(u − 1) −
1

2
(u − 1)2.

We will first explicitly solve these equations for j = 1 and afterwards derive the
general form of the solution for j arbitrary.

Remark 6. Most of the following computations have been performed with the
help of the computer algebra package Maple, see e.g. [Cor02]. �

From (35a) it follows that

(38) C1(η) = −
η2

η − eη−1

Ẽ1(η−1) − γ1eη−1
,

where Ẽk is in general defined by3

(39) Ẽk(z) :=

∫ ∞

1

e−zτ τ−k dτ, z ∈ C, <(z) > 0, k ∈ N,

see e.g. [AS64], and γ1 ∈ R is some constant to be determined. With (36) and de
l’Hôspital’s rule we obtain limη→0 C1(η) = −1 for γ1 = 0; hence indeed γ1 = 0.
Due to

(40) Ẽ2

(

η−1
)

= e−η−1

− η−1Ẽ1

(

η−1
)

,

we can write

(41) C1(η) = −
ηe−η−1

Ẽ2(η−1)
.

3Here <(z) denotes the real part of z.
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As we are interested in (28) for η → ∞ (which corresponds to the overlap domain

between the two charts K1 and K2), we expand Ẽ2

(

η−1
)−1

about η = ∞ to obtain
an indication as to what the Cjs might look like in general:

(42) Ẽ2

(

η−1
)−1

= 1 + (1 − γ)η−1 + η−1 ln η +

(

γ2 − 2γ +
3

2

)

η−2

+ 2γη−2 ln η + η−2(ln η)2 + O
(

η−3
)

,

which implies

(43) C1(η) = ηe−η−1

∞
∑

k,l=0

γ1
klη

−k(ln η)l.

We will show that Cj can in fact be expanded as in (43) for any j ∈ N. To that
end, note that e.g. for j = 2, equation (35b) becomes

(44) C ′
2 −

C2

η

(

2 +
1

η

)

+
3e−η−1

ηẼ2(η−1)
C2 = −

e−η−1

ηẼ2(η−1)
,

which has the solution

(45) C2(η) =

(

−

∫

exp

[

3

∫

e−η′−1

η′−1Ẽ2

(

η′−1
)−1

dη′

]

η−3Ẽ2

(

η−1
)−1

dη + γ2

)

× η2e−η−1

exp

[

−3

∫

e−η−1

η−1Ẽ2

(

η−1
)−1

dη

]

;

here we have used (41). (45) obviously cannot be integrated in closed form. Still,
one can derive the following result concerning the structure not only of C2, but of
any Cj with j ≥ 2:

Proposition 3.1. For j ≥ 1, the solution Cj(η) to (35),(36) can be written as

(46) Cj(η) = ηe−η−1

∞
∑

k,l=0

γ
j
klη

−k(ln η)l.

Here, γ
j
kl ∈ R are constants to be determined from (36).

Proof. The proof is by an induction argument: for i = 1, the assertion is obviously
valid, see (43); let us assume that it holds for i = 1, . . . , j−1. For the homogeneous
solution to (35b) one finds

(47) Chom
j (η) = γjη

2e−η−1

exp

[

−(j + 1)

∫

e−η−1

η−1Ẽ2

(

η−1
)−1

dη

]

;

the integrand in (47) can be expanded as

(48) −
e−η−1

ηẼ2(η−1)
= −η−1 + γη−2 − η−2 ln η + O

(

η−3
)

,

whence
(49)

exp

[

(j + 1)

∫

[

−η−1 + γη−2 − η−2 ln η + O
(

η−3
)]

dη

]

= O
(

η−j−1
)

, j ≥ 2.

For (47), the claim now follows from (42), (49), and the following lemma:



14 NIKOLA POPOVIĆ AND PETER SZMOLYAN

Lemma 3.2. For any α, β ∈ Z,

(50)

∫

zα(ln z)β dz =















zα+1(ln z)β

α + 1
−

β

α + 1

∫

zα(ln z)β−1 dz, α 6= −1

(ln z)β+1

β + 1
, α = −1.

For the particular solution, note first that by the induction hypothesis, the right-
hand side of (35b) can be written as

(51)
1

η2
Cj−1 +

1

η2

∑

k+l=j+1
k,l≥2

kCkCl = e−η−1

∞
∑

m,n=0

γ̃j
mnη−m(ln η)n.

A particular solution to

(52) C ′
j −

Cj

η

(

2 +
1

η

)

+ (j + 1)
e−η−1

ηẼ2(η−1)
Cj = e−η−1

η−m(ln η)n

is given by

(53) C
part
j (η) =

∫

η−m−2(ln η)n exp

[

(j + 1)

∫

e−η′−1

η′−1Ẽ2

(

η′−1
)−1

dη′

]

dη

× η2e−η−1

exp

[

−(j + 1)

∫

e−η−1

η−1Ẽ2

(

η−1
)−1

dη

]

;

With (42), (49), and Lemma 3.2, this concludes the proof, as m,n ≥ 0 and j ≥ 2.
�

We can even obtain a somewhat more precise result on the structure of Cj , j ≥ 1.
Let (k, l) denote the index of a term η−k(ln η)l in (46); given this notation, we have
the following

Proposition 3.3. A term with index (k, l) can occur in (46) only if l ≤ k.

Proof. The proof is again by induction: for i = 1, the assertion is obvious from
(41) and (42). Given the assertion for i = 1, . . . , j − 1, it follows immediately from
(49) and Lemma 3.2 that it holds for the homogeneous part (47) of Cj , as well. To
prove the assertion for (53), we proceed as follows: as in [vGKS] we define a map,
say, ι(m,n), which assigns to the index of a term in (51) the set of indices of the
terms it generates in (53). By (49) and the proof of Proposition 3.1 one then easily
sees that with Lemma 3.2,
(54)

ι(m,n) =

{

{(m + m′, n + n′), (m + m′, n + n′ − 1), . . . , (m + m′, 0)}, m 6= j

{(j + m′ + 1, n + n′ + 1)}, m = j;

here m′, n′ ∈ N with n′ ≤ m′. This completes the proof, as n ≤ m by assumption.
�

3.1.2. Expansions in chart K1. Given Proposition 3.1, we are able to derive as-
ymptotic expansions for Ws

2 in K2 for η2 → ∞. To get the desired expansion for
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v1ε
, however, we need to know what these expansions correspond to in K1. First,

note that with Lemma 2.5, (28) becomes

(55) ε−1
1 v1(u1, ε1) =

∞
∑

j=0

Aj(ε1)(u1 − 1)j ,

where

(56) Aj(ε1) =
e−ε1

ε1

∞
∑

k,l=0
l≤k

α
j
klε

k
1(ln ε1)

l;

here α
j
kl = (−1)lγ

j
kl. It remains to show that (56) does indeed make sense for

ε1 → 0 (which is equivalent to η2 → ∞ in K2). To that end, we assume that a
curve of initial conditions in Σout

1 of the form

(57) (u1, v1, ε1) =
(

uout
1 , vout

1

(

uout
1

)

, δ
)

, vout
1 (1) = 0

is given, and we investigate the corresponding invariant manifold consisting of seg-
ments of solutions of (12). By variation of constants integrating backwards from
Σout

1 , this manifold can be represented as follows:

u1

(

ξ1, u
out
1

)

= uout
1 −

∫ Ξ

ξ1

v1

(

ξ′, uout
1

)

dξ′,(58a)

v1

(

ξ1, u
out
1

)

=
δ

ε
vout
1

(

uout
1

)

e−ξ1

+ e−ξ1

∫ Ξ

ξ1

eξ′

ε1(ξ
′)u1

(

ξ′, uout
1

)

v1

(

ξ′, uout
1

)

dξ′,

(58b)

ε1(ξ1) = εeξ1 ,(58c)

where Ξ = ln δ
ε
. We have the following result:

Proposition 3.4. Let vout
1

(

uout
1

)

be Ck-smooth for some k ∈ N. Then, for j =

0, . . . , k, ∂j

∂u
j

1

v1(u1, ε1) exists and is continuous for ε1 ∈ [0, δ] and |u1 − 1| ≤ β with

β > 0 sufficiently small.

Proof. Changing the integration variable to ε1 in (58), we obtain

u1(ε1) = uout
1 −

∫ δ

ε1

v1(u1(ε
′), ε′)

dε′

ε′
,(59a)

v1(u1, ε1) =
δ

ε1
vout
1 +

1

ε1

∫ δ

ε1

ε′u1(ε
′)v1(u1(ε

′), ε′) dε′;(59b)

here ε′ = εeξ′

. Then, (59) together with

(60) u1(ε
′) ∼ uout

1 + vout
1

(

1 −
δ

ε′

)

, v1(u1(ε
′), ε′) ∼

δ

ε′
vout
1
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implies that v1 remains continuous in (u1, ε1) for ε1 → 0. Differentiating (59)
formally with respect to u1 yields

1 =
duout

1

du1
−

∫ δ

ε1

∂v1(u1(ε
′), ε′)

∂u1
dε′,(61a)

∂v1(u1, ε1)

∂u1
=

δ

ε1

dvout
1

du1

+
1

ε1

∫ δ

ε1

ε′
[

du1(ε
′)

du1
v1(u1(ε

′), ε′) + u1(ε
′)

∂v1(u1(ε
′), ε′)

∂u1

]

dε′;

(61b)

as we have dε′

dε1

= ε′

ε1

, it follows that

(62)
du1(ε

′)

du1
=

v1(u1(ε
′), ε′)

v1(u1(ε1), ε1)
,

whence

(63)
∂v1(u1(ε

′), ε′)

∂u1
=

∂v1(u1(ε
′), ε′)

∂u1(ε′)

v1(u1(ε
′), ε′)

v1(u1(ε1), ε1)
.

This, together with (61a), gives us a formula for
dvout

1

du1

=
dvout

1

duout
1

duout
1

du1

,

(64)
dvout

1

du1
=

dvout
1

duout
1

(

1 +
1

v1(u1, ε1)

∫ δ

ε1

∂v1(u1(ε
′), ε′)

∂u1(ε′)

v1(u1(ε
′), ε′)

ε′
dε′

)

;

in sum, we obtain

(65)
∂v1(u1, ε1)

∂u1
=

δ

ε1

dvout
1

duout
1

(

1 +
1

v1(u1, ε1)

∫ δ

ε1

∂v1(u1(ε
′), ε′)

∂u1(ε′)

v1(u1(ε
′), ε′)

ε′
dε′

)

+
1

ε1v1(u1, ε1)

∫ δ

ε1

ε′
[

v1(u1(ε
′), ε′) + u1(ε

′)
∂v1(u1(ε

′), ε′)

∂u1(ε′)

]

v1(u1(ε
′), ε′) dε′.

Suppose now that vout
1

(

uout
1

)

is C1-smooth; using a standard fixed point argument,

one can show that (65) has a unique solution ∂v1(u1,ε1)
∂u1

which is continuous in

(u1, ε1). This concludes the proof for k = 1; the argument for k ≥ 2 is similar. �

Inspired by (55) and (56), we feel induced to attempt an expansion of v1(u1, ε1) as

(66) v1(u1, ε1) =

∞
∑

i,j=0
j≤i

aij(u1)ε
i
1(ln ε1)

j ,

see Figure 5; the requirement that j ≤ i in the summation in (66) is a consequence
of Proposition 3.3. The coefficient functions aij , 0 ≤ j ≤ i, will be determined
uniquely by the demand for smoothness in u1 and by the requirement that, seen as
a double expansion, (66) should agree with (55). To that end, let us introduce u1

as the independent variable in (12), whence4

dv

du
= −1 − εu,

dε

du
=

ε

v
.

(67)

4Again the subscript 1 will be omitted.
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Q1

v1ε = v1(0, ε) =

∞
X

i,j=0

j≤i

aij(0)ε
i(ln ε)j

v1(u1, ε1) =
∞

X

i,j=0

j≤i

aij(u1)εi
1(ln ε1)j

ε−1

1
v1(u1, ε1) =

∞
X

j=0

Aj(ε1)(u1 − 1)j

ε1

Γ1

P out
1

u1

v1

P in
1

P1

Σout
1

Figure 5. Strategy for deriving an expansion for v1ε
in K1 (n = 3).

Remark 7. With (31) instead of (28) in K2, we would now have

(68) u(v, ε) =

∞
∑

i,j=0
j≤i

bij(v)εi(ln ε)j

instead of (66). One can easily check that the following considerations would then
go through just the same, with only a few minor adjustments required. �

By proceeding just as in K2 and multiplying the resulting equations with v, we
obtain

(69)
∞
∑

i,j=0
j≤i









a′
ijε

i(ln ε)j









∞
∑

k,l=0
l≤k

aklε
k(ln ε)l









+ aijε
i(ln ε)j−1(i ln ε + j)









= (−1 − εu)

∞
∑

i,j=0
j≤i

aijε
i(ln ε)j ,

where ′ = d
du

now. We do not bother to look for the general solution to (69) right
now, but will for the moment only consider the first few terms in (66); hence e.g.
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for 0 ≤ j ≤ i ≤ 2,

a′
00a00 = −a00,(70a)

a′
11a00 + a′

00a11 + a11 = −a11,(70b)

a′
10a00 + a′

00a10 + a10 + a11 = −a10 − ua00,(70c)

a′
22a00 + a′

11a11 + a′
00a22 + 2a22 = −a22,(70d)

a′
21a00 + a′

11a10 + a′
10a11 + a′

00a21 + 2a21 + 2a22 = −a21 − ua11,(70e)

a′
20a00 + a′

10a10 + a′
00a20 + 2a20 + a21 = −a20 − ua10.(70f)

Note that these equations can be solved recursively: (70a) yields either a00 ≡ 0 or
a′
00 = −1; however, for (55) and (66) to agree when seen as double expansions, we

have to take the latter, see (41), whence

(71) a00 = −u + α00.

Here, α00 is a constant which is to be determined from (55); indeed, it follows from
(41) and (42) that an expansion for v is given by

(72) v(u, ε) =
[

−1 + γε + ε ln ε + O(ε2)
]

(u − 1) + O
(

(u − 1)2
)

.

To obtain agreement to lowest order between (55) and (66), we hence have to take
α00 = 1.

By plugging (71) into (70b) and solving the resulting equation

(73) −a′
11(u − 1) + a11 = 0,

one then has

(74) a11 = α11(u − 1).

Similarly, (71) and (74) together with (70c) give

(75) −a′
10(u − 1) + a10 = (u − α11)(u − 1),

which has the solution

(76) a10 = −(u − 1)2 − (1 − α10)(u − 1) − (1 − α11)(u − 1) ln (u − 1);

for (76) to be smooth, α11 has to be chosen such that the ln (u − 1)-terms in (77)
vanish, which implies α11 = 1. The requirement that (55) and (66) should agree
then gives α10 = 1 + γ, see (72):

(77) a10 = −(u − 1)2 + γ(u − 1).

For (70d), (70e), and (70f), one obtains by the same procedure

a22 = (u − 1)2 − (u − 1),(78a)

a21 = (2γ + 1)(u − 1)2 − (2γ − 1)(u − 1),(78b)

a20 = (u − 1)3 + (1 + α20)(u − 1)2 − (γ2 − γ + 1)(u − 1),(78c)

where α22 = 1 and α21 = 2γ + 1 have again been chosen such that the ln (u − 1)-
terms in (78b) and (78c) cancel, and α20 has to be determined by comparing the
leading-order terms in (55) and (66), see Figure 6.
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ε1

P in
1

P out
1

Σout
1

Σin
1

v1

Γ1

u1

Q1

Figure 6. Overlap domain (shaded) of expansions (55) and (66).

Remark 8. The above procedure is in fact closely related to the approach one
would classically take when matching (55) and (66). As these two expansions have
to agree on the overlap domain between the two charts K1 and K2, it is there
one would have to define an intermediate variable. Note that in [HTB90], say,
logarithmic switchback is handled using a modified version of the block matching
principle introduced by [vD75]: terms are matched in blocks according to the powers
of ε they contain, with no distinction being made for any additional logarithmic
factors. Our approach seems to justify this principle, as the logarithmic factors in
(66) are determined simply by the requirement that aij be smooth. �

One expects, of course, that the above procedure can be carried out to any order in
i and j in (69), where for i fixed one starts with j = i and then proceeds recursively
down to j = 0. That this is indeed possible is contained in the following result:

Proposition 3.5. There exist unique smooth functions aij(u1) such that (55) and
(66), seen as double expansions, are the same.

Proof. We proceed just as in computing the first few coefficients of (66) above: for
fixed i we successively solve (69), starting with j = i. By induction we will establish

aij =

i
∑

k=1

α
ij
k (u − 1)k, 1 ≤ j ≤ i,(79a)

ai0 =
i+1
∑

k=1

αi0
k (u − 1)k, j = 0(79b)

for any i ≥ 1 and 0 ≤ j ≤ i, with some constants α
ij
k ∈ R to be chosen appropriately.

Indeed, for i = 1 the claim follows from (74) and (77) by inspection. Let us assume
that (79) is valid for akl, where k = 1, . . . , i − 1 and l ≤ k. By plugging (71) into
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(69) and collecting powers of ε ln ε, one obtains

(80) −a′
ij(u − 1) + iaij = −(j + 1)ai,j+1 − uai−1,j −

∑

k+m=i
l+n=j

l≤k≤i−1, n≤m≤i−1

a′
klamn;

here we have used a′
00 = −1. The homogeneous solution to (80) is given by

(81) αij(u − 1)i, 0 ≤ j ≤ i

with some constant αij ; to complete the proof, we have to consider the following
cases:

• for j = i, equation (80) becomes

(82) −a′
ii(u − 1) + iaii = −

∑

k+m=i
k,m≥1

a′
kkamm,

which has the solution

(83) aii = αii(u − 1)i +
i−1
∑

k=1

αii
k (u − 1)k,

as by (79)

(84) −
∑

k+m=i
k,m≥1

a′
kkamm = −

i−1
∑

k=1

α̃ii
k (u − 1)k

and a term −α̃ii
k (u − 1)k gives a particular solution of the form

(85) −
α̃ii

k

i − k
(u − 1)k, 1 ≤ k ≤ i − 1;

the constant αii remains to be determined in one of the next steps.
• for j = i−1 (which is indeed representative of all further cases), one obtains

(86) − a′
i,i−1(u − 1) + iai,i−1 = −iaii − uai−1,i−1

−
∑

k+m=i
k,m≥1

[

a′
kkam,m−1 + akka′

m,m−1

]

,

where the homogeneous solution is again given by (81). As for the inho-
mogeneity, note that terms of the form −iαii

k (u − 1)k in −iaii generate
particular solutions of the form

iαii(u − 1)i ln (u − 1), k = i,(87a)

−
iαii

k

i − k
(u − 1)k, 1 ≤ k ≤ i − 1.(87b)

Similarly, for the terms −α
i−1,i−1
k u(u − 1)k in −uai−1,i−1 one obtains

α
i−1,i−1
i−1 (u − 1)i−1

(

(u − 1) ln (u − 1) − 1
)

, k = i − 1,(88a)

−
α

i−1,i−1
i−2

(i − k)(i − k − 1)
(u − 1)k

(

− 1 + (i − k)u
)

, 1 ≤ k ≤ i − 2.(88b)
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By the induction hypothesis, for the remaining terms one has

(89) −
∑

k+m=i
k,m≥1

[

a′
kkam,m−1 + akka′

m,m−1

]

= −
i
∑

k=0

α̃
i,i−1
k (u − 1)k

for some constants α̃
i,i−1
k ∈ R. Just as above, the terms −α̃

i,i−1
k (u − 1)k

give rise to terms of the form

α̃
i,i−1
i (u − 1)i ln (u − 1), k = i,(90a)

−
α̃

i,i−1
k

i − k
(u − 1)k, 1 ≤ k ≤ i − 1.(90b)

In sum, one thus has

(91) ai,i−1 = αi,i−1(u − 1)i +

i−1
∑

k=1

α
i,i−1
k (u − 1)k

+
(

iαii + α
i−1,i−1
i−1 + α̃

i,i−1
i

)

ln (u − 1)(u − 1)i,

where αii is now chosen such that (91) is smooth, i.e., such that the
ln (u − 1)-terms cancel, and αi,i−1 still is at our disposal.

• for 1 ≤ j ≤ i − 2 in general, one repeats the same procedure, i.e., one
solves (80) and subsequently fixes αi,j+1 appropriately so as to eliminate
any ln (u − 1)-terms in aij , guaranteeing the smoothness of aij .

• in the final step, for j = 0, additional terms of O
(

(u− 1)i+1
)

are generated

as claimed due to the terms −α
i−1,0
i u(u − 1)i and −α̃i0

i (u − 1)i+1 in the
right-hand side of (80) giving

(92) α
i−1,0
i

(

u + ln (u − 1)
)

(u − 1)i

and

(93) α̃i0
i u(u − 1)i

in ai0, respectively. One is then left with αi1 and αi0, which one chooses
such as to make sure that ai0 is smooth and that (55) and (66) agree if
both are seen as double expansions, which concludes the proof.

�

We are now ready to formulate the main result of this section, namely, to give an
expansion of v1ε

for n = 3:

Proposition 3.6. For ε ∈ (0, ε0] with ε0 > 0 sufficiently small, v1ε
= v1(0, ε) can

be expanded as

(94) v1ε
= 1 − ε ln ε − (γ + 1)ε + 2ε2(ln ε)2 + 4γε2 ln ε + O(ε3).

Proof. By plugging (71), (74), (77), (78a), and (78b) into (66), one obtains the
following expansion for v1:

(95) v1(u1, ε1) = −(u1 − 1) + (u1 − 1)ε1 ln ε1

+
[

−(u1 − 1)2 + γ(u1 − 1)
]

ε1 +
[

(u1 − 1)2 − (u1 − 1)
]

ε2
1(ln ε1)

2

+
[

(2γ + 1)(u1 − 1)2 − (2γ − 1)(u1 − 1)
]

ε2
1 ln ε1 + O

(

ε3
1

)

.

The assertion now follows with u1 = 0 and ε1 = ε in (95). �
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Remark 9. Note that the expansion in (94) is equally valid in the original setting
of (4), i.e., vε = v1ε

, as is easily seen by performing the appropriate blow-down
transformation, which is trivial here. Analogous results have been obtained in the
literature, see e.g. [Lag88]. �

3.2. The case n = 2. Although the case n = 2 is potentially more difficult, we can
use the same strategy as before to compute expansions for v1ε

. Not surprisingly,
however, computationally the analysis is more involved now, due to the extensive
switchback which arises in the matching process for n = 2.

3.2.1. Expansions in chart K2. As the situation in K2 is very similar to that for
n = 3, we will not go into too many details: given the ansatz

(96) v2(u2, η2) =

∞
∑

j=0

Cj(η2)(u2 − 1)j ,

which we plug into (27) rewritten with η2 as the independent variable,

du

dη
= −

v

η2
,(97a)

dv

dη
=

v

η
+

u − 1

η2
v +

v

η2
,(97b)

we obtain a recursive sequence of equations for Cj , j ≥ 1, by comparing powers of
u − 1:

C ′
1 −

C1

η

(

C1

η
+

1

η
+ 1

)

= 0,(98a)

C ′
j −

Cj

η

(

1 +
1

η

)

−
j + 1

η2
C1Cj =

1

η2
Cj−1 +

1

η2

∑

k+l=j+1
k,l≥2

kCkCl, j ≥ 2.(98b)

The initial conditions are again given by

(99) C1(0) = −1, C2(0) = −
1

2
, Cj(0) = 0, j ≥ 3;

moreover, C0 ≡ 0 just as for n = 3. From (98a), we have

(100) C1(η) = −
ηe−η−1

Ẽ1(η−1) + γ1

;

as limη→0 C1(η) = −1 for γ1 = 0, we conclude that γ1 = 0 again. The expansion of

Ẽ1

(

η−1
)−1

about η = ∞ is given by

(101) Ẽ1

(

η−1
)−1

= (ln η − γ)−1 − η−1(ln η − γ)−2 +
1

4
η−2(ln η − γ)−2

+ η−2(ln η − γ)−3 + O
(

η−3
)

,

whence

(102) C1(η) = ηe−η−1

∞
∑

k,l=0

γ1
klη

−k(ln η − γ)−l;
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here γ is Euler’s constant, as before. For j = 2, (98b) gives

(103) C ′
2 −

C2

η

(

1 +
1

η

)

+
3e−η−1

ηẼ1(η−1)
C2 = −

e−η−1

ηẼ1(η−1)
,

which has the solution

(104) C2(η) =

(

−

∫

η−2Ẽ1

(

η−1
)2

dη + γ2

)

ηe−η−1

Ẽ1

(

η−1
)−3

.

Although (104) cannot be integrated in closed form, we still have the following
result, which is similar to the one derived for n = 3:

Proposition 3.7. For j ≥ 1, the solution Cj(η) to (98),(99) can be written as

(105) Cj(η) = ηe−η−1

∞
∑

k,l=0

γ
j
klη

−k(ln η − γ)−l.

Here, γ
j
kl ∈ R are constants to be determined from (36).

Proof. The proof is very similar to that of Proposition 3.1: for i = 1, the assertion
holds by (100); let it be valid for i = 1, . . . , j − 1. The homogeneous solution to
(98b) is given by

(106) Chom
j (η) = γj

ηe−η−1

Ẽ1(η−1)j+1
,

where Ẽ1

(

η−1
)−j−1

can be expanded as

(107) Ẽ1

(

η−1
)−j−1

= (ln η − γ)−j−1 − (j + 1)η−1(ln η − γ)−j−2

+
1

4
(j + 1)η−2(ln η − γ)−j−2 +

1

2
(j + 1)(j + 2)η−2(ln η − γ)−j−3 + O

(

η−3
)

.

Given the induction hypothesis, the right-hand side of (98b) has the following form:

(108)
1

η2
Cj−1 +

1

η2

∑

k+l=j+1
k,l≥1

kCkCl = e−η−1

∞
∑

m,n=0

γ̃j
mnη−m(ln η − γ)−n;

a particular solution of (98b) corresponding to a term e−η−1

η−m(ln η − γ)−n is
given by

(109) C
part
j (η) =

∫

η−m−1(ln η − γ)−nẼ1

(

η−1
)j+1

dη · ηe−η−1

Ẽ1

(

η−1
)−j−1

.

With the substitution η′ = η
γ

and (107), the integrand in (109) can be written as

(110)

∞
∑

m′=m+1
n′=n−j−1

γ̃mn
m′n′η′−m′

(ln η′)−n′

;

the claim now follows from Lemma 3.2 with η′ again replaced by η. �

Note, however, that we can state no analogue to Proposition 3.3 here; in fact, it
seems that any index pair (k, l) can occur in (66) now.
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3.2.2. Expansions in chart K1. As in the case n = 3, in order to obtain an expan-
sion for v1ε

, it now remains to translate (28) to K1, see Figure 7. Lemma 2.5 again
gives

(111) ε−1
1 v1(u1, ε1) =

∞
∑

j=0

Aj(ε1)(u1 − 1)j ,

see (55), where

(112) Aj(ε1) =
e−ε1

ε1

∞
∑

k,l=0

α
j
kl

εk
1

(ln ε1 + γ)l

with α
j
kl = (−1)lγ

j
kl.

Remark 10 (Transcendentally small terms). Terms in powers of ε1, as well as
terms in powers of ε1 multiplied by powers of (ln ε1 + γ)−1, are smaller than all
positive powers of (ln ε1+γ)−1: they are said to be beyond all orders of (ln ε1+γ)−1,
or to be transcendentally small terms. In the original setting of flow around a
circular cylinder, [Ski75] showed how to calculate a few of these terms. He pointed
out, however, that they are in fact negligible: it is the only very slight asymmetry
in the flow field which indicates the relative insignificance of these inertial terms
for low Reynolds numbers, see [Ski75] for a detailed analysis. �

As for n = 3, using variation of constants we can again write

u1

(

ξ1, u
out
1

)

= uout
1 −

∫ Ξ

ξ1

v1

(

ξ′, uout
1

)

dξ′,(113a)

v1

(

ξ1, u
out
1

)

= vout
1

(

uout
1

)

+

∫ Ξ

ξ1

ε1(ξ
′)u1

(

ξ′, uout
1

)

v1

(

ξ′, uout
1

)

dξ′,(113b)

ε1(ξ1) = εeξ1(113c)

for the manifold consisting of segments of solutions to (12) given the initial curve
(57). In analogy to Proposition 3.4 we now have

Proposition 3.8. Let vout
1

(

uout
1

)

be Ck-smooth for some k ∈ N. Then, for j =

0, . . . , k, ∂j

∂u
j

1

v1(u1, ε1) exists and is continuous for ε1 ∈ [0, δ] and |u1 − 1| ≤ β with

β > 0 sufficiently small.

Proof. The proof is the same as for n = 3, with the relevant relations given by

u1(ε1) = uout
1 −

∫ δ

ε1

v1(u1(ε
′), ε′)

dε′

ε′
,(114a)

v1(u1, ε1) =
δ

ε1
vout
1 +

1

ε1

∫ δ

ε1

u1(ε
′)v1(u1(ε

′), ε′) dε′(114b)

and

(115)
∂v1(u1, ε1)

∂u1
=

dvout
1

duout
1

(

1 +
1

v1(u1, ε1)

∫ δ

ε1

∂v1(u1(ε
′), ε′)

∂u1(ε′)

v1(u1(ε
′), ε′)

ε′
dε′

)

+
1

v1(u1, ε1)

∫ δ

ε1

[

v1(u1(ε
′), ε′) + u1(ε

′)
∂v1(u1(ε

′), ε′)

∂u1(ε′)

]

v1(u1(ε
′), ε′) dε′

now, respectively. �
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P1

P out
1

Γ1

P in
1

Q1

v1(u1, ε1) =
∞

X

i,j=0

aij(u1)
εi
1

(ln ε1 + γ)j

v1ε = v1(0, ε) =

∞
X

i,j=0

aij(0)
εi

(ln ε + γ)j

ε−1

1
v1(u1, ε1) =

∞
X

j=0

Aj(ε1)(u1 − 1)j

ε1

v1

u1

Σout
1

Figure 7. Strategy for deriving an expansion for v1ε
in K1 (n = 2).

To derive an expansion for v1(u1, ε1) of the form

(116) v1(u1, ε1) =

∞
∑

i,j=0

aij(u1)
εi
1

(ln ε1 + γ)j
,

we have to consider

dv

du
= −εu,

dε

du
=

ε

v
,

(117)

which yields

(118)

∞
∑

i,j=0



a′
ij

εi

(ln ε + γ)j





∞
∑

k,l=0

akl

εk

(ln ε + γ)l



+ aij

εi

(ln ε + γ)j

(

i −
j

ln ε + γ

)





= −εu

∞
∑

i,j=0

aij

εi

(ln ε + γ)j
.
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Collecting powers of ε(ln ε + γ)−1 in (118), we obtain the following sequence of
equations for aij with 0 ≤ i + j ≤ 3:

a′
00a00 = 0,(119a)

a′
01a00 + a′

00a01 = 0,(119b)

a′
10a00 + a′

00a10 + a10 = −ua00,(119c)

a′
02a00 + a′

00a02 + a′
01a01 − a01 = 0,(119d)

a′
11a00 + a′

00a11 + a′
10a01 + a′

01a10 + a11 = −ua01,(119e)

a′
20a00 + a′

00a20 + a′
10a10 + 2a20 = −ua10,(119f)

a′
03a00 + a′

00a03 + a′
02a01 + a′

01a02 − 2a02 = 0,(119g)

a′
12a00 + a′

00a12 + a′
11a01 + a′

01a11 + a′
10a02 + a′

02a10 + a12 − a11 = −ua02,(119h)

a′
21a00 + a′

00a21 + a′
20a01 + a′

01a20 + a′
11a10 + a′

10a11 + 2a21 = −ua11,(119i)

a′
30a00 + a′

00a30 + a′
20a10 + a′

10a20 + 3a30 = −ua20.(119j)

Here we have proceeded by diagonalization: as we do not have such precise infor-
mation on the structure of (105) as we had for n = 3, a simple recursion will not
work. We thus have to take a different approach, comparing coefficients in (118)
for i + j = p constant.

Let us illustrate the procedure by explicitly solving the first few equations in (119):
from (119a) we have a00 ≡ 0 or a′

00 = 0; however, for (111) and (116) to agree,
we have to take the former, which substantially simplifies all further arguments.
Equation (119b) is vacuous, as indeed 0 = 0, whereas (119c) then immediately
yields a10 ≡ 0. Given a00 ≡ 0, (119d) implies either a01 ≡ 0 or a′

01 = 1. Here, the
requirement that (111) and (116) agree to lowest order fixes a′

01 = 1, whence

(120) a01 = u + α01

for some α01 ∈ R. In fact, with (100) and (101) one finds

(121) v(u, ε) =

[

1

ln ε + γ
−

ε

ln ε + γ
+

ε

(ln ε + γ)2
+

1

2

ε2

ln ε + γ
−

5

4

ε2

(ln ε + γ)2

+
ε2

(ln ε + γ)3
+ O(ε3)

]

(u − 1) + O
(

(u − 1)2
)

,

which implies α01 = −1. Plugging (120) into (119e) then gives

(122) a11 = −(u − 1)2 − (u − 1);

moreover, it follows from (119f) that a20 ≡ 0, as well. Again with (120), equation
(119g) becomes

(123) a′
02(u − 1) − a02 = 0,

which has the solution

(124) a02 = α02(u − 1)

for some constant α02. With reference to (121) one can fix α02, whence α02 = 0.
As for a12 and a21, one easily obtains from (119h) and (119i) that

(125) a12 = 2(u − 1)2 + u − 1
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and

(126) a21 =
1

2
(u − 1)3 + (u − 1)2 +

1

2
(u − 1),

respectively, whereas a30 ≡ 0. As for n = 3, we can now prove the following general
result:

Proposition 3.9. There exist unique smooth functions aij(u1) such that (111) and
(116), seen as double expansions, are the same.

Proof. The proof differs significantly from the one we gave for n = 3, although it
is again by induction, now on the sum i + j instead of on i alone, however. We will
show

aij =

i+j
∑

k=1

α
ij
k (u − 1)k, i, j ≥ 1,(127a)

a0j =

j−1
∑

k=1

α
0j
k (u − 1)k, j ≥ 2,(127b)

ai0 ≡ 0, i ≥ 2;(127c)

indeed, for i + j = 2, the assertion is obvious from (122) and (124). Let (127) be
valid for i + j = 2, . . . , p − 1; we have to show that it is valid for i + j = p, as well.
Collecting powers of ε(ln ε + γ)−1 in (118), we obtain

(128)
∑

k+m=i
l+n=j

[a′
klamn + a′

mnakl] + iaij − (j − 1)ai,j−1 = −uai−1,j .

Plugging a00 ≡ 0 and (120) into (128) gives the following equation for a0p:

(129) a′
0p(u − 1) − (p − 1)a0p = −

∑

k+l=p+1
k,l≥2

[a′
0ka0l + a′

0la0k];

by the induction hypothesis, the above sum can be written as

(130) −

p−2
∑

k=1

α̃
0p
k (u − 1)k.

As terms of the form −α̃
0p
k (u − 1)k generate particular solutions of the form

(131) −
α̃

0p
k

k − p + 1
(u − 1)k, 1 ≤ k ≤ p − 2

in (129) and the homogeneous solution is given by

(132) α0p(u − 1)p−1,

for a0p the claim follows. Note that the constant α0p has to be chosen such that
(111) and (116) agree when seen as double expansions; the smoothness of a0p is
granted irrespective of the choice of α0p. For aij with i + j = p and i ≥ 1, (128)
yields

(133) iaij = jai,j−1 − uai−1,j −
∑

k+m=i
l+n=j

[a′
klamn + a′

mnakl];
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due to the fact that a00 ≡ 0, this completely determines aij . Moreover, it follows
from the induction hypothesis that aij is of the desired form and that ap0 ≡ 0,
respectively, which concludes the proof. �

Remark 11. The above proof shows that once the leading-order behaviour in (116)
is determined, the transcendentally small terms in (116) are given as solutions
not of differential, but of algebraic equations. Our approach thus immediately
provides us with these terms, whereas in the classical approach, quite cumbersome
computations are required for their determination, as matching is typically done
only up to transcendentally small quantities there. �

We can now give an expansion of v1ε
for n = 2:

Proposition 3.10. For ε ∈ (0, ε0] with ε0 > 0 sufficiently small, v1ε
= v1(0, ε) can

be expanded as

(134) v1ε
= −

1

ln ε + γ
+ O

(

1

(ln ε + γ)2

)

.

Proof. As for n = 3, (116) gives

v1(u1, ε1) = (u1 − 1)
1

ln ε1 + γ
+
[

−(u1 − 1)2 − (u1 − 1)
] ε1

ln ε1 + γ

+

[

1

2
(u1 − 1)3 + (u1 − 1)2 +

1

2
(u1 − 1)

]

ε2
1

ln ε1 + γ
+ O

(

1

(ln ε1 + γ)2

)

,

(135)

whence we obtain the assertion with u1 = 0. �

Remark 12. As −(ln ε + γ)−1 can be expanded as

(136) −
1

ln ε + γ
= −

1

ln ε

∞
∑

j=0

(

−
γ

ln ε

)j

for 0 < ε < ε0 sufficiently small, v1ε
can be written as

(137) v1ε
= −

1

ln ε
+

γ

(ln ε)2
+ O

(

1

(ln ε)3

)

,

which agrees with the expansion found e.g. in [HTB90]. In fact, as was pointed
out by [LC72], the expansion is more compact if it is telescoped, i.e., arranged in
powers of (ln ε + γ)−1. However, this arrangement is not helpful numerically, as
(134) becomes undefined for ε = 0.5614 . . . , whereas (137) allows for values of ε up
to 1. �

4. Asymptotic solution expansions

4.1. Expansions in chart K1. Given the expansion for v1ε
from Proposition 3.6,

which we can write as

(138) v1ε
=

∞
∑

i,j=0
j≤i

βijε
i(ln ε)j
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with constants βij ∈ R, it makes sense to set up expansions

(139) u1(r1, ε1) =

∞
∑

i,j=0
j≤i

aij(r1)ε
i
1(ln ε1)

j , v1(r1, ε1) =

∞
∑

i,j=0
j≤i

bij(r1)ε
i
1(ln ε1)

j ,

where we regard both u1 and v1 as functions of (r1, ε1) now. The ansatz in (139)
is closer to the classical approach than what was done in the previous sections;
however, as the techniques we apply are very similar to the ones used before, we
only sketch the procedure here, leaving out most of the details. Rewriting (12) with
r1 as the independent variable now and omitting the subscript 1 again, we obtain

du

dr
= −

v

r
,

dv

dr
=

v

r
+

εuv

r
,

dε

dr
= −

ε

r
.

(140)

With (140), we get

∞
∑

i,j=0
j≤i

[

a′
ijε

i(ln ε)j −
aij

r
εi(ln ε)j−1(i ln ε + j)

]

= −
1

r

∞
∑

i,j=0
j≤i

bijε
i(ln ε)j ,(141a)

∞
∑

i,j=0
j≤i

[

b′ijε
i(ln ε)j −

bij

r
εi(ln ε)j−1(i ln ε + j)

]

=
1

r

∞
∑

i,j=0
j≤i

bijε
i(ln ε)j

+
1

r









∞
∑

i,j=0
j≤i

aijε
i(ln ε)j









·









∞
∑

k,l=0
l≤k

bklε
k(ln ε)l









;

(141b)

comparing powers of ε ln ε yields the following recursive sequence of differential
equations,

ra′
ij − iaij − (j + 1)ai,j+1 = −bij ,(142a)

rb′ij − ibij − (j + 1)bi,j+1 = bij +
∑

k+m=i−1
l+n=j

l≤k, n≤m

aklbmn,(142b)

with the initial conditions given by

(143) aij(1) = 0, bij(1) = βij , 0 ≤ j ≤ i.

Remark 13. For v1, it follows directly from (138) that the ansatz in (139) is
plausible, whereas for u1, it can be justified a posteriori using (142a). �
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For the first few coefficients in 139, we thus have

ra′
00 = −b00,(144a)

rb′00 = b00,(144b)

ra′
11 − a11 = −b11,(144c)

rb′11 − b11 = b11,(144d)

ra′
10 − a10 − a11 = −b10,(144e)

rb′10 − b10 − b11 = b10 + a00b00;(144f)

with Proposition 3.6, the solutions to (144) are easily found to be given by

a00 = 1 − r, b00 = r,(145a)

a11 = −r(1 − r), b11 = −r2,(145b)

a10 = (1 − γ)r(1 − r) + 2r2 ln r, b10 = −r(1 + γr) − 2r2 ln r,(145c)

which allows us to state the following result:

Proposition 4.1. For n = 3, the solution to (1) can be expanded as

(146) u(ξ, ε) = 1 −
1

ξ
+ ε(1 − γ − ln ε)

(

1 −
1

ξ

)

− ε

(

1 +
1

ξ

)

ln ξ + O(ε2)

( inner expansion); here ξ is as defined in (2).

Proof. The result is immediate from (139) and (145) after one has applied the
appropriate blow-down transformations r1 = ξ−1 and ε1 = εξ, as

(147) u1(r1, ε1) = 1 − r1 − r1(1 − r1)ε1 ln ε1 + (1 − γ)r1(1 − r1)ε1+

+ 2r2
1 ln r1ε1 + O

(

ε2
1

)

.

�

Similarly, for n = 2 the equations

du

dr
= −

v

r
,

dv

dr
=

εuv

r
,

dε

dr
= −

ε

r

(148)

in combination with an ansatz of the form

(149) u1(r1, ε1) =

∞
∑

i,j=0

aij(r1)
εi
1

(ln ε1 + γ)j
, v1(r1, ε1) =

∞
∑

i,j=0

bij(r1)
εi
1

(ln ε1 + γ)j

lead to the recursive sequence of equations

ra′
ij − iaij + (j − 1)ai,j−1 = −bij ,(150a)

rb′ij − ibij + (j − 1)bi,j−1 =
∑

k+m=i−1
l+n=j

aklbmn;(150b)

the initial conditions are again given by

(151) aij(1) = 0, bij(1) = βij , i, j ≥ 0
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for some βij ∈ R. To leading order one finds

(152) a01 = ln r, b01 = −1,

whence one obtains the following

Proposition 4.2. For n = 2, the inner expansion of the solution to (1) is given by

(153) u(ξ, ε) = −
ln ξ

ln εξ + γ
+ O

(

1

(ln εξ + γ)2

)

.

Proof. The proof is analogous to that for n = 3. �

Remark 14. By expanding (ln εξ + γ)−1 for 0 < ε < ε0 small, one can write

(154) u(ξ, ε) = −
ln ξ

ln ε + γ
+ O

(

1

(ln ε + γ)2

)

or

(155) u(ξ, ε) = −
ln ξ

ln ε
+

γ ln ξ

(ln ε)2
+

(ln ξ)2

(ln ε)2
+ O

(

1

(ln ε)3

)

,

which are the expansions usually found in the literature, see e.g. [LC72] or [HTB90].
�

4.2. Expansions in chart K2. To derive solution expansions in K2, we would
have to proceed as above, i.e., we would set out by determining the structure of
the coefficients in (139) respectively (149) in general, which we would then use to
rearrange (139) and (149) with respect to a new basis. It is these expansions which
would provide us with the proper ansatz for the corresponding expansions in K2.
In sum, we expect to obtain the following result which we cite for reference only,
see [LC72]:

Proposition 4.3. The outer solution expansion for (1) is given by

(156) u(x, ε) = 1 − εE2(x) + O(ε2)

for n = 3 and by

(157) u(x, ε) = 1 +
1

ln ε + γ
E1(x) + O

(

1

(ln ε + γ)2

)

for n = 2, respectively; here Ek is defined by

(158) Ek(z) :=

∫ ∞

z

e−tt−k dt, z ∈ C, <(z) > 0, k ∈ N.
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