Assignment VI

MA 242

Due on 31^{th} July

Note:- This assignment will be evaluated out of 20 points.

Important:- 31^{th} is the firm deadline for submitting this assignment. No assignments will be accepted after 31^{th} .

1. (5 points) If $p(t) = c_0 + c_1t + c_2t^2 + ... + c_nt^n$, then p(A) is defined to be the matrix formed by replacing t by A such that

$$p(A) = c_0 I + c_1 A + c_2 A^2 + \dots + c_n A^n.$$

Show that if λ is an eigenvalue of A then one eigenvalue of p(A) is $p(\lambda)$.

- 2. (5 points) Suppose $A = PDP^{-1}$ where P is 2X2 and $D = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$. Let $B = 5I 3A + A^2$. Show that B is diagonalizable.
- 3. (5 points) Let $\{v_1, ..., v_n\}$ be an orthonormal set. Verify the following equality.

$$||x|| = \sqrt{|c_1|^2 + |c_2|^2 + ... + |c_n|^2}$$

If
$$x = c_1 v_1 + c_2 v_2 + ... + c_n v_n$$
.

4. (5 points) If A is similar to B then we know that $\mathbf{DetA} = \mathbf{DetB}$, but what can we say about the reverse statement, that is does $\mathbf{DetA} = \mathbf{DetB}$ imply that A is similar to B?

1