Test 2

Things to Remember

- A **Vectorspace** is a nonempty set **V** of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars(real numbers), subject to the tex axiomslisted below. The axioms must hold for all vectors **v**, **u**, **w** in **V** and for all scalars c and d.
 - 1. The sum $\mathbf{v} + \mathbf{u} \in \mathbf{V}$.
 - 2. u + v = v + u.
 - 3. (u + v) + w = u + (v + w).
 - **4.** There is a **zero** vector **0** in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
 - **5.** For each **u** in V, there is a vector **-u** in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
 - **6.** The scalar multiple of \mathbf{u} bu c, denoted by $c\mathbf{u}$, is in V.
 - 7. $c(\mathbf{u} + \mathbf{v}) = (c\mathbf{u} + c\mathbf{v}).$
 - 8. $(c+d)(\mathbf{u}) = (c\mathbf{u} + d\mathbf{u}).$
 - **9.** $c(d\mathbf{u}) = (cd)\mathbf{u}$.
 - 10. 1u = u.
- A **Subspace** of a vector space V is a subset H of V that has three properties.
 - 1. The zero vector of V is in H.
 - **2.** H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H , the sum $\mathbf{u} + \mathbf{v}$ is in H.
 - **3.** H is closed under scalar multiplication. That is, for each \mathbf{u} in H and for each scalar c, the vector $c\mathbf{u}$ is in H.
- Span $\{v_1, v_2, ..., v_p\}$ is the set of vectors that can be written as linear combinations of $\{v_1, v_2, ..., v_p\}$.
- If $v_1, v_2, ..., v_p$ are in a vector space V, the Span $\{v_1, v_2, ..., v_p\}$ is a subspace of V.
- The Null Space of an mxn matrix A, denoted by NulA, is the set of all solutions to the homogeneous equation Ax=0. In set notation

$$NulA = \{\mathbf{x}: \mathbf{x} \text{ is in } R^n \text{ and } A\mathbf{x} = 0\}.$$

- The null space of an mxn matrix A is a subspace of \mathbb{R}^n .
- The Coloumn Space of an mxn matrix A, denoted by ColA, is the set of all linear combinations of the coloumns of A. If $A=[a_1,a_2,...,a_n]$, then

$$Col A = \operatorname{Span}\{a_1, a_2, \dots, a_n\}$$

- The coloumn space of an mxn matrix A is a subspace of R^m .
- The coloumn space of mxn matrix A is all of R^m if and only if the equation $A\mathbf{x} = b$ has a solution for each **b** in R^n .
- Let T be a linear transformation from the vector space V into the vector space W.The NulT is known as **KernalT**.

$$KernalT = \{x: x \text{ is in V and } Tx = 0\}.$$

- KernalT is a subspace of Vector Space V.
- An indexed set of vectors $\{v_1,...,v_p\}$ in v is said to be linearly independent if the vector equation $c_1v_1+c_2v_2+...+c_pv_p=\mathbf{0}$. has only the trivial solution c_i 's are zero. Otherwise Linearly dependent.
- **Basis**:- Let H be the subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{b_1, b_2, b_3, ..., b_p\}$ in V is a **basis** for H if
 - $-\mathcal{B}$ is linearly independent set.
 - $-H = Span\mathcal{B}.$
- $\{1, t, t^2, ..., t^n\}$ spans P_n .
- Let $S = \{v_1, v_2, ..., v_p\}$ be a set in V and $H = Span\{v_1, v_2, ..., v_p\}$, then
 - If v_k is the linear combination of the other vectors in S, then the set $S \{v_k\}$ still spans H.
 - If $H \neq \{0\}$, then some subset of S is a basis for H.

- Elementary row operations on a matrix do not affect the linear dependence relation among the coloumns of the matrix.
- The pivot coloumns of a matrix A form a basis of coloumn for ColA.
- $\mathcal{B} = \{b_1, b_2, b_3, ..., b_p\}$ be a basis for a vector space V.Then for each \mathbf{x} in V, there exists a unique set of scalars $c_1, ..., c_n$ such that

$$\mathbf{x} = c_1 b_1 + c_2 b_2 + \dots + c_n b_n$$

• Co-ordinates Suppose the set $\mathcal{B} = \{b_1, b_2, b_3, ..., b_n\}$ is a basis for V and \mathbf{x} is in V. The co-ordinates of \mathbf{x} relative to the basis \mathcal{B} is the nx1

$$\text{matrix } [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ \vdots \\ c_n \end{bmatrix}, \text{ such that } \mathbf{x} = c_1b_1 + c_2b_2 + \dots + c_nb_n.$$

- $[\mathbf{P}]_{\mathcal{B}} = [b_1 b_2 ... b_n]$ is known as the **change of co-ordinate matrix**.
- $\mathcal{B} = \{b_1, b_2, b_3, ..., b_p\}$ in V is a **basis** for a vector space V. Then the co-ordinate mapping $\mathbf{x} \to [\mathbf{x}]_{\mathcal{B}}$ is a one one transformation from V onto \mathbb{R}^n .
- If a vector space V has a basis $\mathcal{B} = \{b_1, b_2, b_3, ..., b_n\}$, then any set in V containing more than n vectors must be linearly independent.
- P^n is isomorphic to R^{n+1} .
- If a vector space has a basis of n vectors, then every basis of V must consist of exactly n vectors.
- $\mathbf{DimV} = \mathbf{Number}$ of vectors in a basis for V.
- If $\mathbf{DimV} < \infty$ then V is said to be finite Dimensional.
- Let H be the subspace of a finite dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis of H . Also H is finite dimensional and

$$DimH \leq DimV$$

.

The Basis Theorem Let V be the p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

- The dimension of NulA is the number of free variables in the equation $A\mathbf{x} = 0$, and the dimension of coloumn A is the number of pivot coloumns in A.
- Rank A is the dimension of the coloumn space of A.
- Rank Theorem Rank A + DimNulA = n, where A is a mxn matrix.

• The Invertible Matrix Theorem

Let A be nxn matrix. Then the following statements are equivalent to the statement that A is invertible matrix.

- A is invertible.
- The coloumns of A forms a basis of \mathbb{R}^n .
- $-ColA = \mathbb{R}^n$.
- Dim ColA=n
- $\operatorname{Rank} A = n.$
- -NulA = 0
- Dim NulA=0

• Eigenvectors and Eigenvalues:-

An Eigenvector of an nxn matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an Eigenvector corresponding to λ .

- The **eigenvalues** of a **triangular matrix** are the entries on its main diagonal.
- Let A be an nxn matrix. Then A is invertible if and only if **0** is not an eigenvalue of A.

• If x_1 and x_2 are the roots of a quadratic polynomial then the polynomial can be represented as $(t - x_1)(t - x_2) = t^2 - (x_1 + x_2)t + x_1x_2$. Its is a polynomial in P_2 .