Things to Remember for Test III

. An eigenvector of an nXn matrix A is nonzero vector such that

Ax = Az for some scalar A. This A is called an eigenvalue of A if there
is a nontrivial solution x of Az = Az; such an x is called an eigenvector
corresponding to A.

. The solution set of the equation (A-AI)x = 0 forms the Eigen Space of
A corresponding to A.

. If vy,...,v,, are eigenvectors that correspond to distinct eigen values
Al ey Ay of an nXn matrix A | then the set {v1,...,v,} is linearly
independent.

. Det(A-AI) = 0 is known as the characteristic equation of an nXn matrix
A with ) as eigenvalue.

. Similar Matrices:- If A and B are nXn matrices , then A is similar
to B if there is an invertible Matrix P such that P~'AP = B.

. A square Matrix A is said to be Diagonalizable if A is similar to a
Diagonal Matrix.

. An nXn matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors. This is also known as eigenvector basis.

. An nXn matrix with n distinct eigenvalues is diagonalizable.
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. [ U Ug U3 . . Uy ] .| = u1v1 + ugvg + usvs +...+ uyv,. This

Un
is denoted as u.v and is known as dot product or inner product
between two vectors in R".
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Let u, v and w be vectors in R", and let ¢ be a scalar. Then

Norm is the length of the vector v and is wrriten as
lv]] = Vv..
For vectors v and u in R™ the distance between v and v is written as

dist(u,v) = ||lu — v||

Two vectors u and v in R™ are orthogonal to each other if u.v = 0.

Pythagorean Theorem Two vectors v and v are orthogonal if and
only if
lu+]l* = [Jull® + [lv]*

The orthogonal complement of W is denoted by W+ and set
theoritically written as

Wt={x: xu=0V ueW}

W is a subspace of R".

Let A be mXn matrix. Then

(RowA)*™ = NulA, (ColA)* = NulA”.

Orthogonal Set A set of vectors in R" is said to be an orthogonal
set, if each pair of distinct vectors from the set is orthogonal, that is,
u;.u; = 0 whenever 7 # j.

Every orthogonal set S of nonzero vectors in R" is linearly independent
and hence forms a basis for the subspace spanned by S.
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Let {uy, ..., u,} be an othogonal basis for a subspace W of R™ then each
yin W has a unique representation as a linear combination of u, ..., u,.
In fact if
Y =cCuy + ... + Cruy.
then
y.Uj

Cj: Dol Vj:1,2,...,77,
W al}

Orthogonal projection of y along u.

YU
—u
U

Yu =

Orthogonal projection of y perpendicular to u.

Unit Vectors

A set {uy,...,u,} is an orthonormal set if it is an orthogonal set of unit
vectors.

An mXn matrix U has orthonormal coloumns if and only if UTU = I
An nXn matrix U has orthonormal coloumns if and only if U7 = U~!

Inner Product An inner product on a vector space V is a function
that, to each pair of vectors © and v in V , associates a real number
< u,v > and satisfies the following axioms , for all u,v and w in V' and
all scalars c:

a) <u,v >=<v,u>

(c

d

(a)

(b) <u+v,w>=<u,w>+ <v,w >

)

)<uu> > 0and < u,u >= 0 if and only if u = 0.

(
A vector space with an inner product is called an inner product space.



28. Lengths defined in inner product space by
|v]| = V<v.o > .

29. The Cauchy-Schwarz Inequality
Let V be an inner product space then

< w, v >[< lul] lv]l.

30. For any inner product space V and for all v and v in V|

[[u+ ol < [lul] + [Jv]



