Things to Remember for Test III

- 1. An **eigenvector** of an nXn matrix A is nonzero vector such that $Ax = \lambda x$ for some scalar λ . This λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $Ax = \lambda x$; such an \mathbf{x} is called an eigenvector corresponding to λ .
- 2. The solution set of the equation $(A-\lambda I)\mathbf{x} = 0$ forms the Eigen Space of A corresponding to λ .
- 3. If $v_1,...,v_n$ are eigenvectors that correspond to distinct eigen values λ_1 ,..., λ_n of an nXn matrix A, then the set $\{v_1,...,v_r\}$ is linearly independent.
- 4. $Det(A-\lambda I) = 0$ is known as the characteristic equation of an nXn matrix A with λ as eigenvalue.
- 5. **Similar Matrices:** If A and B are nXn matrices, then A is similar to B if there is an invertible Matrix P such that $P^{-1}AP = B$.
- 6. A square Matrix A is said to be Diagonalizable if A is similar to a Diagonal Matrix.
- 7. An nXn matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. This is also known as eigenvector basis.
- 8. An nXn matrix with n distinct eigenvalues is diagonalizable.

is denoted as u.v and is known as **dot product** or **inner product** between two vectors in \mathbb{R}^n .

- 10. Let u, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then
 - (a) u.v = v.u
 - (b) (u+v).w = u.w + v.w
 - (c) (cu).v = c(u.v) = u.(cv)
 - (d) $u.u \ge 0$, and u.u = 0 if and only if u = 0.
- 11. **Norm** is the length of the vector \mathbf{v} and is wrriten as

$$||v|| = \sqrt{v.v}.$$

12. For vectors v and u in \mathbb{R}^n the distance between u and v is written as

$$dist(u, v) = ||u - v||$$

- 13. Two vectors u and v in \mathbb{R}^n are **orthogonal** to each other if u.v = 0.
- 14. **Pythagorean Theorem** Two vectors u and v are orthogonal if and only if

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

15. The orthogonal complement of W is denoted by W^{\perp} and set theoritically written as

$$W^{\perp} = \{ \mathbf{x} : \mathbf{x}.u = 0 \ \forall \ u \in W \}$$

- 16. W is a subspace of \mathbb{R}^n .
- 17. Let A be mXn matrix. Then

$$(Row A)^{\perp} = Nul A, \qquad (Col A)^{\perp} = Nul A^{T}.$$

- 18. **Orthogonal Set** A set of vectors in \mathbb{R}^n is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, $u_i.u_j = 0$ whenever $i \neq j$.
- 19. Every orthogonal set S of nonzero vectors in \mathbb{R}^n is linearly independent and hence forms a basis for the subspace spanned by S.

20. Let $\{u_1, ..., u_n\}$ be an othogonal basis for a subspace W of \mathbb{R}^n then each y in W has a unique representation as a linear combination of $u_1, ..., u_n$. In fact if

$$y = c_1 u_1 + \dots + c_n u_n.$$

then

$$c_j = \frac{y.u_j}{u_j.u_j} \ \forall j = 1, 2, ..., n.$$

21. Orthogonal projection of y along u.

$$y_u = \frac{y.u}{u.u}u$$

22. Orthogonal projection of y perpendicular to u.

$$y_{u^{\perp}} = y - \frac{y.u}{u.u}u$$

23. Unit Vectors

$$\frac{u}{\|u\|}$$

- 24. A set $\{u_1, ..., u_n\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- 25. An mXn matrix U has orthonormal coloumns if and only if $U^TU = I$
- 26. An nXn matrix U has orthonormal coloumns if and only if $U^T = U^{-1}$
- 27. **Inner Product** An inner product on a vector space V is a function that, to each pair of vectors u and v in V, associates a real number $\langle u, v \rangle$ and satisfies the following axioms, for all u, v and w in V and all scalars c:
 - (a) < u, v > = < v, u >
 - (b) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
 - (c) < cu, v > = c < u, v >
 - (d) $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0$ if and only if u = 0.

A vector space with an inner product is called an inner product space.

28. Lengths defined in inner product space by

$$||v|| = \sqrt{\langle v.v \rangle}.$$

29. The Cauchy-Schwarz Inequality
Let V be an inner product space then

$$|\langle u, v \rangle| \le ||u|| \ ||v||.$$

30. For any inner product space V and for all u and v in V ,

$$||u + v|| \le ||u|| + ||v||.$$