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Abstract

For multi-scale differential equations (or fast-slow equations), one
often encounters problems in which a key system parameter slowly
passes through a bifurcation. In this article, we show that a pair
of prototypical reaction-diffusion equations in two space dimensions
can exhibit delayed Hopf bifurcations. Solutions that approach at-
tracting/stable states before the instantaneous Hopf point stay near
these states for long, spatially-dependent times after these states have
become repelling/unstable. We use the complex Ginzburg-Landau
equation and the Brusselator models as prototypes. We show that
there exist two-dimensional spatio-temporal buffer surfaces and mem-
ory surfaces in the three dimensional space-time, and we derive asymp-
totic formulas for them. At each point in the domain, these surfaces
determine how long the delay in the loss of stability lasts, i.e., to
leading order when the spatially-dependent onset of the post-Hopf os-
cillations occurs. Also, the onset of the oscillations in these PDEs is
a hard onset.
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1 Introduction

Many systems of multi-scale differential equations undergo dynamic Hopf
bifurcations in which a parameter slowly changes and a stable state becomes
unstable due to the slow, generic passage of a pair of eigenvalues through
the imaginary axis. When the governing equations in the multi-scale (or
fast-slow) systems are analytic ordinary differential equations (ODEs), it
has been known for over 50 years that there are delays in the onset of the
instabilities [4], [16], 21 136, [37, 38, B39, 40, 146, [47, 48, 49]. Solutions which
have approached the stable (attracting) states before the instantaneous Hopf
bifurcations remain near those states long after they have become unstable
(repelling) in the dynamic Hopf bifurcations. This phenomenon is known as
delayed Hopf bifurcation (DHB).

The dynamic manifestation of DHB is that the onset of the post-Hopf
oscillations is a hard onset, with the systems transitioning rapidly to large
scale oscillations when they leave neighborhoods of the unstable states. This
contrasts with the gradual square root growth of the oscillation amplitudes
in generic classical Hopf bifurcations.

Applications of DHB in ODE models have been studied in many areas
of science and engineering: chemistry [8, [16, 29, 30, [47], electrical circuits
[20, 23], 50], electrocardiac models [31], fluid mechanics and geophysics [2], [14]
22, 133], mechanical oscillators [11, [39], neuroscience [4, [5, 9l 10}, 25, [43], 44], 48],
economics [19], among others. For each of these models, the long delay
between the instantaneous bifurcation and the onset of oscillations, which
is O(1/¢) in the fast time (where ¢ is the small parameter measuring the
time-scale separation), plays an important role in the system dynamics.

Recently, it has been shown that the DHB phenomenon occurs not only
in analytic ODEs but also naturally in one-dimensional, multi-scale partial
differential equations (PDEs) of reaction-diffusion type [I8] 26]. As a param-
eter slowly varies, these systems undergo dynamic super-critical Hopf bifur-
cations. Examples studied in [I8] 26] include the complex Ginzburg-Landau
equation, the FitzHigh-Nagumo PDE, and the Hodgkin-Huxley PDE. Addi-
tional theory for problems with spectral gaps is given in [3].

In this article, we show that the phenomenon of DHB also occurs in a
pair of multi-scale reaction-diffusion PDEs in two space dimensions (2-D).
In particular, we study DHB in the complex Ginzburg-Landau (CGL) PDE
in 2-D and in the Brusselator model in 2-D. Both of these equations have
Hopf bifurcations in which an attracting quasi-steady state (QSS) becomes
a repelling QSS, and we consider the problems in which the bifurcation pa-
rameters slowly and generically pass through the Hopf points.

First, we use asymptotic analysis on the linearized CGL PDE in 2-D to



show that solutions that approach the attracting QSS before the instanta-
neous Hopf bifurcation remain close to it even after it has become repelling
in the Hopf bifurcation. From the asymptotic analysis, we find that the de-
lays between the time of the instantaneous Hopf bifurcation and the onset
of the post-Hopf oscillations are long (O(1/¢€) in the fast time) and generally
spatially-dependent.

Next, we quantify the duration of these delays. We define spatio-temporal
buffer surfaces and spatio-temporal memory surfaces in the three-dimensional
space-time of the CGL PDE. These are the surfaces along which the ampli-
tudes of the particular and homogeneous solutions of the linearised CGL
PDE, respectively, cross a threshold, and cause the solution of the full PDE
to diverge from the repelling QSS. We derive asymptotic formulas for both
surfaces, and we determine how they depend on the initial data and on the
properties of the sources terms in the CGL PDE. We find that, at each point
(x,y) in the domain, numerically-computed solutions of the fully nonlinear
CGL PDE with initial data given at py < 0 stay close to the repelling QSS
until they reach the spatio-temporal memory surface or the spatio-temporal
buffer surface, whichever occurs first at that point. Hence, the linear terms
appear to drive the phenomena of DHB in these PDEs, just as they do in
the analytic ODEs.

Finally, we present numerical simulations showing that DHB also occurs
in the Brusselator PDE model in 2-D. Since its creation [42], the Brusselator
has served as a prototypical model in pattern formation and chemical oscilla-
tion theory (see for example [I5]). Here, we consider the case when the main
bifurcation parameter slowly passes through the Hopf point. As with the
CGL PDE, solutions of the Brusselator PDE that approach the attracting
QSS before the instantaneous Hopf bifurcation remain near the QSS for long
times after it has become repelling. We find that there is a substantial —and
generally point-dependent— delay before the onset of oscillations occurs.

The asymptotic and numerical results we present here for these proto-
typical pattern-forming systems in 2-D extend our earlier work for DHB in
PDEs in 1-D [I8, 26]. In particular, in [I8] we defined buffer curves and
memory curves for the linearized CGL PDE in 1-D and derived asymptotic
formulas for their spatio-temporal dependence. We showed that key terms in
the particular solution are exponentially small up until the spatio-temporal
buffer curve, and precisely along it these terms become O(1). Similarly, the
homogeneous solution is exponentially small up until the memory curve and
large after that. Overall, for the CGL PDE in 1-D, we showed that there
is a competition between these exponentially small terms: at each point in
the 1-D domain the term that ceases being small first determines the length
of the delay to leading order at that point, and hence also when the hard



onset of the (post-Hopf) oscillations occurs. The memory and buffer surfaces
defined in this article play a similar role for the CGL PDE in 2-D.

We recall that classical Hopf bifurcations are ubiquitous in PDEs and
spatially extended systems in 2-D. General results are presented, for example,
n [45]. Some specific examples include electrodeposition models [32], bulk-
surface reaction-diffusion [41], and nematic liquid crystals [12} [13], in addition
to the CGL and Brusselator models studied here.

This article is organized as follows. In Section [2, we present the main
asymptotic analysis to show that DHB occurs in the linearized CGL equa-
tion with a slowly varying parameter in two space dimensions. In Section
we derive the asymptotic formulas for the spatio-temporal buffer surface and
the memory surface for the CGL PDE. In Section {4 we present the results
of numerical simulations for the fully nonlinear CGL equation that comple-
ment the theoretical predictions (of the previous two sections) for the spatio-
temporal dependence of the delayed Hopf bifurcations. Section 5| features the
DHB results obtained from numerical simulations of the Brusselator model
in 2-D. Conclusions are presented in Section [6] Some asymptotic calculations
are presented in the Appendix.

2 Analysis of DHB in the 2-D CGL equation

In two space dimensions, the CGL equation with a source term and a slowly
varying parameter is given by

Ap = (L+iwg)A — (1 +1ix)|APA + Vela(x,y) + edAA,
My = €.

(1)

Here, (x,y) € R* A = aa—jz + %22, t >0, A =A(x,y,t) is complex-valued,
and 0 < ¢ < 1 is a small parameter. The linear growth rate u = p(t) is
real for the main phenomena we study. The other system parameters satisfy
wp > 0, « is real, d may be complex-valued (d = dgr +1id;) with dg > 0, and
these parameters are all independent of €. The source term I,(x,y) breaks
the symmetry A — Ae'® for any real 0 of the CGL equation and is taken
to be bounded and positive, with uniformly bounded derivatives. The initial
data at n(0) = pg < 0is A(x,y,0) = Ag(x,y), and taken to be bounded and
continuous for all (x,y). We refer to [I] for the classical CGL PDE.

2.1 The attracting and repelling quasi-steady states

The PDE has an attracting quasi-steady state (QSS) for all p < —9,
where & > 0 is small and O(1) with respect to €, and solutions approach it
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at an exponential rate. Similarly, it has a repelling QSS for all u > 6, from
which solutions diverge at an exponential rate. These QSS are given by

-1 La(x,y)
A
ass(x, ) = H+1wo
( a6 y) Hdlp+iwg)Al(x,y)  (1+1ic)T(x,y) )
(1 + iwg)? (1 +1iwo)? (K2 + wg)

2

(2)

Here, the O(e2) terms depend on (x,y) and p.

2.2 Solution of the linearised equation
In this section, we consider py < 0 and solve the linearised equation,

A¢ = (p+iwg)A +Vela(x,y) + edAA,
W = E.

(3)

This equation may be simplified using an integrating factor. Let B(x,y, u) =

—(utiwg)?

A(x,y,u)e” 2= . The equation for B is an inhomogeneous heat equation,
VB, = VEdAB + Iy (x,yle = (4)

—(ng+iwg)?

The solution of with initial data B(x,y, o) = Ag(x,y)e = = is ob-
tained by superimposing the homogeneous solution By, (x,y, 1) and the par-
ticular solution By, (x,y, n). For p > po, we find

B (X ) &Jex _(X_X/)Q_(y_y/)Q A (X/ /)dxld /
I drd =) Jpe T 4d(p — o) oy k

Here, we have used the fundamental solution of the heat equation in two

Cx2402
dimensions, @ (x,y, 1) = et Also, for p >y,

47'[d
1 (" . —(ariwg?
BP(X;%H):ﬁJ g(xvy7u_u)e 2£0 duv
Ko
1 —(x—x)P—-(y—y')?
- = I, ;oL ! 3.1
g(x,y, 1) Tdm JR2 exp{ I (x,y’)dx'dy



Transforming back to the original dependent variable using the integrat-
ing factor, we find that for © > py the homogeneous solution is

eas (W —nd+2iwo (n—po)) Cex2— (y—y )2
An(x,y, 1) = J e
R2

y')
wdwwo Ap(x,y’)dx’'dy’.
1rd (1 — o) o(x",y’) Y 5
5)

Furthermore, for p > g the particular solution is

(utiwg)?
2e

(4 H - *(ﬁ+iw0)2 -
AP(XaUaH) :T g(xay7u_u)e e du7
Ho (6)
1 _(X_X,)2_(y_y,)2 o / /
S La(x', .
g(x,y, 1) T JR2 exp{ v (x’,y")dx'dy

This completes the derivation of the solution of the linearised equation. We
calculate Ay, for several different types of initial data Ay(x,y) in Section
and A, for several different types of source terms in Section [3.2] Also,
we observe here that it will be useful to distinguish between initial data
Ao(x,y, 1) given for py < —wq and for —wy < py < 0.

2.3 Solutions stay near the repelling QSS at least until
H = Wo

In this section, we consider solutions with py < —wgy. We show that not
only do the solutions of with py < —wy remain close to the attracting
QSS until the time of the instantaneous Hopf bifurcation at i = 0, but after
the parameter crosses the instantaneous Hopf bifurcation they remain close
to the repelling QSS as well, at least until the time p = +wq at all points
(x,y) for the functions I,(x,y) we consider.

We consider complex values of w in a horizontal strip with mid-line on
the real axis and of sufficient height (at least 3wg). This enables the use of
classical methods of stationary phase and steepest descents, see for example
[6l, 27, 35], to calculate Ap(x,y, ). We find, for & < u < wy,

i (B )

H+l(l)0
et 7
+O<(H+iwo)5> g

T (V 27mg(x, Y, b+ iwo) + (9(\/5)> e (HHiw)?.

The calculation is presented in Appendix [A]
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The first and second terms are precisely the leading order terms in the
expansion of the repelling QSS for the linear CGL (cf. , where the QSSs
are given for the cubic CGL equation). The third (remainder) term contains
the higher order terms in the asymptotic expansion of the repelling QSS, and
continued integration by parts will yield them. The fourth term is exponen-
tially small for p € [5, wg — Ke™), for some K >0 and any 0 < r < 1. It is a

classic Stokes type term. This term is not in the expansion of the repelling
w2

QSS (on p > 9) to all orders. Rather, it is beyond all orders, O (629

arising naturally from tracking solutions on (and near) the attracting QSS
along a contour over the saddle point in the complex p plane and into the
regime of Re(p) > 0. It is a measure of the exponentially small distance
between the attracting and repelling QSS at u = 0.

Overall, formula shows that, at all points (x,y), the solutions of the
linear CGL equation with Gevrey regular data Ag(x) given at pyg < —wy
remain near the repelling QSS at least until 1 = wy to leading order.

Next, one needs to include also the nonlinear terms from . This was
done for DHB in the 1-D CGL PDE in Section 6 of [18]. First, we used
the same type of integrating factor (as used in above) to rewrite the
nonlinear PDE for B(x, u) there. Then, we split the solution into two parts:
B(x, u) = By (x, u)+b(x, u), where we recall that By, is the particular solution
of the linearized equation. The PDE for the remainder term b(x, u) was
converted into an integral equation. We showed formally that there is a mild
solution of that integral equation, using an iterative method, and that the
magnitude of b(x, i) remains small at least until © = wq. Hence, the solution
of the full nonlinear PDE remains near the repelling QSS at least until wy.

As the estimates of the mild formulation of the 1-D nonlinear equation
only used L*® — L*™ estimates for the heat semi-group, we expect that a
similar formal analysis will hold for two spatial dimensions, as well. That
is, based on decomposing B(x,y,u) = B,(x,y,u) + b(x,y, u), we expect
that b(x,y, u) remains small at least until p reaches wy. Fundamentally,
the nonlinear terms remain exponentially small at least as long as the linear
terms do.



3 The spatio-temporal memory surface and
spatio-temporal buffer surface for the CGL
equation

In this section, we derive the general formulas for the spatio-temporal mem-
ory and buffer surfaces of , and we apply these to several classes of initial
data Ay(x,y) and several different source terms I,(x,y), respectively.

3.1 The spatio-temporal memory surface

By writing the homogeneous solution Ay, (x,y, ) as a single exponential func-
tion, we define the spatio-temporal memory surface to be the set of points
(%, Y, Hmem (X, Yy)) at which the real part of the argument of the exponential
vanishes. In this section, we examine three different types of initial data:
constant, Gaussian, and periodic, in order to study how the spatio-temporal
memory surface depends on the functional form of Ay(x,y).

For constant initial data Ag(x,y) = 1, one finds from that

An(x,y, 1) = e 2s (W—pg+2iwo (n—po)) (8)

It is independent of (x,y). Hence, Ap(x,y) is exponentially small for all
L € (Mo, —Mo). At w = —pg, the real part of the exponential vanishes,
implying that the memory surface is a horizontal plane in the (x,y, 1) space:

Hmem(xay) = —Ho, for all (X>y)7 (9)

where we recall o < 0. Then, for © > —pgy, A, becomes exponentially large.
(x2+y?)

For Gaussian initial data Ag(x,y) = e~ % _, formula shows that the
homogeneous solution is given by

—(x24+y2)

(o )] e2e (W= 13 +2iwo (L—10)) g Te+ dlu—ig)) | (10)

o+ d(pL—po

Anlxy, 1) = {

At each (x,y), the real part of the argument of the exponential vanishes for

w— g
2¢e

+1In(0) — % In ((0+ dr(p — 1)) + d7 (1 — 10)?)

P4y o+ dr(p— o))
Al(o+ dr(p — Ho))2 + di(p — 1o)?

(11)

=0,



where we recall d = dg +1d; in (I)). Hence, to leading order asymptotically,
we find that the spatio-temporal memory surface is parabolic in x and y,

€ 1
ton,) =l = -5 (10(0) = 5 1n (0+ 2l + 1)

€ ((X2+y2)(0+2dk|110|)
4luol \ (0 + 2drlpol)? 4 4d?|pol?

(12)

) + O(?).

For periodic initial data Ag(x,y) = cos T(x —y) cos F(x +y), the homo-
geneous solution for > pg is
. 4% d (u—po)
Anlx,y, 1) = eze (W —ni+2lwo(n—po)) o= L2 cos T(x —y) cos F(x +y).
(13)
Hence, at any point (x,y), the real part of the argument vanishes for

1 4rd(p —
( 2 2)_M+ln|cos%(x—y)cos%(7(+y)|:O- (14)

2 0 L?
Asymptotically to leading order, one finds logarithmic dependence on Ay,
Sem?d ¢
Wmem (X, Y) = |10l + Iz m Injcos T(x —y) cos T (x +y)|. (15)

These theoretical results for pyem (%, y) with constant, Gaussian, and periodic
initial data are compared to simulations of in Section

Remark. In [I§], for the CGL PDE in 1-D, we used the label homogeneous
exit time curve. (There, homogeneous referred to the curve being defined by
A, not that the curve is spatially homogeneous.) Here, we label it instead
the spatio-temporal memory surface, since it is determined by the memory
of the initial data. One could also label it the spatio-temporal way-in way-
out surface, in analogy with the way-in way-out function defined for DHB in
analytic ODEs [36, [37].

3.2 The spatio-temporal buffer surface

In this section, we focus on the particular solution A, (x,y, u) with special
emphasis on the fourth (last) term in the general formula (7). We consider
0 < u < wy and label this term G:

Glx . 1) = (V2mg(x,y, o+ icwg) + O(V) ) ed (0190 (1)

The function G is the component of the particular solution A, (x,y, u) that
measures the deviation from the repelling QSS (where we recall that the first
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three terms in represent the QSS). It is generated by passage over the
saddle point at L = —iwy in the complex p-plane, as shown in App. [A] Tt is
present in all solutions that start from initial data at any py < 0, including
solutions on the attracting QSS.

The spatio-temporal buffer surface is defined as the surface along which

|G(X,U>H)| - 15 (17)

to leading order. Here, we derive a general formula for the spatio-temporal
buffer surface for smooth, bounded sources 14(x,y), and asymptotic formulas
for it with constant, Gaussian, periodic, and stripe sources. We will see
that G ceases to be exponentially small and becomes O(1) in a spatially-
dependent manner, in general. This will imply that all solutions with initial
data given at py < 0, including those on the attracting QSS, must leave an
O(1) neighborhood of the repelling QSS when p reaches the buffer surface,
irrespective of how large |yl is, i.e., irrespective of how far in the distant
past the solutions approached the attracting QSS.

From (16]), we find that the spatio-temporal buffer surface is given im-
plicitly by

Re [ln (\/gtg(x,y, u—l—iwo)) + %(u%—iwo)Q] =0, (18)

for general smooth and bounded source terms 14 (x,y). We label the solution
Wput (X, y). Its graph is the spatio-temporal buffer surface. To leading order,

w2 (x,y) = wi — e In(27) — 2e Inlg(x, y, wp + iwy)l. (19)

At each point (x,y), the buffer surface . (x,y) determines the time at
which the deviation of A, (x,y, 1) from the repelling QSS ceases to be expo-
nentially small.

We begin with constant source terms, Ic(x,y) = ¢, and set ¢ = 1 without
loss of generality. Substituting this into the integral for g in @, we find

g(xay7u_ll) :17 for all (Xay) and n> |1> Ho. (20)
Hence, by , the buffer surface is to leading order

Hout (%, y) = W — =— In(270), for all (x,y). (21)
2(,00

It is independent of (x,y). Hence, at all points in the domain, the particular
solution ceases to be exponentially small uniformly at this time, pyys.
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—(2+y?)

Next, we consider Gaussian source terms, Ig(x,y) =e o, with o > 0.
Using @, we find

)= o I U ' }
e ”)‘<o+d(u—m)ephmdm—ﬂ))' 22)

Hence, implies that, to leading order, the buffer surface is

(x,y) = £ 2702
Hbuf (X, Y —wo_zwo n((G+w0(dR_dl))2+w3(dR+dI)2)
€ (0 + wo(dg — dy)) .
+4wo [(G+w0(dR_dl))2+w§(dR+dI)Z} (x —|—y(). |
23

For periodic source terms, Ip(x,y) = cos T(x —y) cos F(x+y), @ yields
g(x, Yy, — i) = e AT/ o T(x—y)cos F(x+y). (24)

Hence, implies that, to leading order, the buffer surface is

€ dem®(dg — d
Uput (X, Y) = wg — —— In(27) + ( 1; 1)

€
— — Infeos T(x —y) cos F(x +y)|.
Wo

Finally, we let H denote the Heaviside step function (1 on x > 0 and 0
on x < 0) and study stripe source terms,

Ls(uy) = Y (H(x—x) — H(x — (x¢ + h)). (26)
k

Here, h is the width of the stripe, x) denotes the left edge of the k-th stripe,
and X1 —xx = A > h for each k. We use @ to derive

~ _1 or Xk+h—X er Xk —X
g(x’y’”_“)_2;< f( 4d(u—m> f( 4d(u—m>> o

where erf z = \/l% I e~t" dt is the error function. Hence, implies that,
to leading order, the buffer surface is given by

E £ .
Hpuf (X, Y) = wo — G In(27) — o Inlg(x,y, wo(1 +1))], (28)

where g is given by . For these source terms, the spatio-temporal buffer
surface is compared to the numerical solutions of the PDE in Section

11



4 DHB in the CGL equation with constant,
Gaussian, and stripe sources

In this section, we report on the spatially-dependent duration of the delayed
Hopf bifurcation (DHB) observed in direct numerical simulations of solu-
tions of the CGL PDE with uy < 0. We will examine both cases in
which the initial time satisfies uy € (—wg,0) and py < —wqy. We recall
that the escape surface is the graph of the time pe(x,y) in (x,y, 1) space.
Numerically, we obtain Hes(x,y) by calculating the set of points at which
IRe(Apum (X, Yy)) —Re(Aqss(x,y))| = dun, where Ayum(X,y) is the numerically
computed solution of (1)), Agss(x,y) is the value of A along the QSS (Z2)),
and &y, denotes a threshold.

We will show that es(X,y) agrees with the predictions made from the
memory and buffer surfaces. At each point (x,y),

Hesc(XﬂJ) ~ min(umem(xay)a ubuf(xay))' (29)

We work with several different types of source terms (constant, Gaussian,
and stripe) and with the asymptotic expansions for these surfaces derived in
Section [3l

In the numerical simulations, we used symmetric Strang splitting [34],
with centered finite differences for the spatial discretisation and 4th order
Runge-Kutta with fixed time step for the time discretisation. The results
were also checked independently using a Chebyshev grid for the spatial dis-
cretisation, finding good agreement.

4.1 DHB with constant source term

In the first representative simulation, we study DHB in with constant
source term I¢(x,y) = 1 and Gaussian initial data,

2142
Ao(x,y) =c1 + coe™ io , €1,C0 >0, (30)
given at pp = —0.3, which we note is in (—wgp,0). We show the escape

surface in Fig. [I(a). Below it, i.e., for all O(1) values g < pese(x,y), the
solution is near the repelling QSS. Then, just before pu reaches it, oscillations
of amplitude O(y/¢) set in at (x,y). Furthermore, as soon as pu is slightly
beyond pes(x,Yy), the amplitude of the oscillations at (x,y) is large.

We observe that the delayed, post-Hopf, temporal oscillations first set in
at the origin of the domain, at the vertex of the paraboloid-type surface,
quite close to @ = —py. As u slowly increases past —pg, the oscillations

12



0.32

-20 -10 0 10 20

Figure 1: (a) In the three-dimensional (x,y, 1) space, the surface pesc(X,y)
is where the hard onset of the oscillations occurs. It has been obtained
from direct numerical simulation of the PDE with constant source term

Ic(x,y) = 1 and Gaussian initial data Ag(x,y) = ¢; + Cze%ﬁ with
(c1,c9,0) = (0.5,0.5,2.5), given at py = —0.3. (b) The memory surface
Hmem (X, Yy) is given by (1I). It gives the leading order asymptotics of the
escape time for all (x,y). (c¢) The difference |tese (X, Y) — Hmem (X, Y)| is shown
in the projection onto the (x,y) plane. Here, the parameters are d = 1,
wo =0.5, « =0.2, and ¢ = 0.01.

occur on successively larger disks about the origin. Then, once p reaches
0.327 approximately, there is a fairly rapid transition, and the oscillations
occur on the entire domain.

For comparison, we show the memory surface ppem(x,y) in Fig. [I[b).
The memory surface was computed as follows. First, we combined the ho-
mogeneous solutions and to determine th% h;)mogeneous solution,
Ay, with the initial data , Ao(x,y) =c1+ Coe a0 Then, by enforcing
the condition |Ay| = 1, we obtain the leading order asymptotic relation

o ) —(x2+y?) )‘_
G+d(u—uo)ep<4(0+d(u—uo)) =0 G

for the memory surface corresponding to this A.

The difference |Hesc (X, Y) — Umem (X, Y)| is shown in Fig. (c) At the center
of the Gaussian, the difference is small (with magnitude of approximately
107, d.e., O(&*/?)). Then, in an annular region about the origin (red and
dark red), the difference is slightly larger, due to nonlinear effects. Finally,
both surfaces exhibit a fairly rapid transition into the regime (blue region in
Fig. [Ifc), red in (a) and (b)) where they are essentially constant, since the

Gaussian is tiny. Here, Wpem(x,y) = /13 — 2eInc; &~ 0.322 to leading order

HQ—H8+2€III Ci1+Co
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(as obtained from for large x* 4+ y?), which agrees well with the value
observed numerically in .

Moreover, for the CGL with this (constant) source term, the buffer sur-
face lies above the memory surface for all (x,y) in 3-D, since ppue(x,y) =

w? —eln(2m) &~ 0.481 for all (x,y). Hence, for all (x,y), the minimum
in Uese(X,Yy) ~ min{tmen (X, Y), Hpur(x,y)} is given entirely by the memory
surface in this simulation.

The second representative simulation is also with I¢(x,y) = 1. However,
now the initial data given at —wy < po < 0 is periodic,

7T 7T
Ao(x,y)=p1+pzcosf(x—y)cosf(><+y), (32)

with p; > p2 > 0, so that Ag(x,y) is strictly positive everywhere. The
results are shown in Fig.

(a}u; (b)n.:;:s

0.31

' 0.29

0.27 ' ‘ 0.27
' 0.27

20 20
10
0
N
LAY U 2 v

-20 -10
-20 z

Figure 2: (a) In the three dimensional (x,y, 1) space, the surface pesc(X,y)
is where the hard onset of the oscillations occurs. It has been obtained from
direct simulation of with constant source term I¢(x,y) = 1 and periodic
initial data Ag(x,y) = p1 + p2cos F(x —y)cos F(x +y) at uy = —0.3 with
(p1, P2, L) = (1,0.5,25). (b) The memory surface pmem(X,y) given by (14).
(¢) The surface |WUpum(X,Y) — tmem (X, Y)| shown in the projection onto the
(x,y) plane. The parameters are d = 1, wy = 0.5, « = 0.2, and ¢ = 0.01.

The escape surface computed from the numerical simulations (Fig. [2|(a))
shows that the oscillations first occur at time p =~ 0.281 at the points
(x,y) = (j1L,j2L), where j;,jo = —1,0,1 (dark blue), i.e., at the maxima
of Ag(x,y) where cos ¥ (x —y) cos F(x+y) = 1. About each of those points,
the oscillations set in on successively larger disks as u slowly increases, until
those disks collide at pu a 0.306 (near the transition from yellow to orange).
Then, as p increases further, the escape surface consists of the four inverted
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paraboloid segments (orange and red). The peaks occur at time p ~ 0.315

at the points (x,y) = (%L, %L), where ji,jo = —1,1 (dark red), i.e., at the

minima of Ay(x,y) where cos F(x —y) cos F(x +y) = —1.
For comparison, the memory surface pen(x,y) is defined by
4r?d(p —
W —u2+2¢In |p; + paexp (—w) cos F(x —y)cos F(x +y)| =0,

(33
and shown in Fig. 2[b). It has global minima (dark blue) when pmem =

—87%d|po]
o[ —2¢e1n <1+O.5e 2 ) ~ 0.2866 to leading order, with py, =

—0.3. These occur at the points where Ay(x,y) has its maxima. Also, the
memory surface has global maxima (dark red) when p & 0.3211, at the points
where Ag(x,y) has its minima. In between, it has the same conical shape
qualitatively as the escape surface.

The difference between pese(x,y) and pmem(x,y) is shown in Fig. [2(c).
The nonlinear terms cause [l to grow more steeply from the local minima,
compared to the memory surface, so that the disks collide at a slightly later
time than for the memory surface. Then, after the disks collide, the inverted
paraboloids are slightly wider in pes(X,y) due to the nonlinear terms.

Finally, for this second representative simulation, we report that the
buffer surface also lies above the memory surface for all (x,y) in 3-D. Indeed,
with constant source Ic(x,y) = 1, Wput(x,y) = Vw3 — eln(27) =~ 0.481.
Hence, also here the minimum is given by the memory surface for all (x,y).

Remark. In the second simulation, we also combined two homogeneous
solutions, here (8) and , to determine the homogeneous solution Ay
that corresponds to the periodic initial profile Ag(x,y) = p1 + pacos T(x —
y) cos T(x +y). Then, by setting [Ay| = 1, we obtain (33).

Remark. We also explored the effect of giving the initial data at different
times, including pwy < —wq, while keeping the source term and initial data
the same as in the second simulation. In these simulations (data not shown),
we observe that Hes.(X,Yy) = wo — €1In(27) to leading order for all (x,y), as
determined by A, recall . This is as expected from the analysis, because
Wput (X, Y) < Hmem(X,Yy) at all points when the initial data is given at time
Ly < —wy and ¢ is sufficiently small.

4.2 DHB with Gaussian source term

Gaussian source terms can be used to model spatially localized, radially
symmetric inputs, such as a circular spot of visible light that shines on the
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reactor in a chemical pattern-forming experiment. A representative exam-
ple of with Gaussian source term is shown in Fig. . Here, Ig(x,y) =

exp (—%ﬁ) with 0 = 1, and the initial data at @y = —0.75 is Ag(x,y) =

cos T(x —y) cos F(x +y) with L = 25.

: h
20 20
SN .
20 20
Y -10 o W Y -1 o 10
-2

901075 -20 910"

Figure 3: (a) In the three dimensional (x,y, ) space, the surface pesc(X,y)
is where the hard onset of the oscillations occurs. It has been obtained from

direct simulation of with Gaussian source term Ig(x,y) = exp (—%

and periodic initial data Ag(x,y) = cos F(x —y) cos T(x +y) at uy = —0.75
with L = 25. (b) The predicted escape surface is given by the minimum of
Wput(X,y) (parabolic part) and ppem(X,y) (periodic part). (c¢) The surface
Itesc (X, Y) — min{tmem, Hpur}l Shown in the projection onto the (x,y) plane.
The parameters are d =1, wyg = 0.5, « = 0.2, and ¢ = 0.01.

From direct numerical simulations of the PDE, we find that the domain
of the escape surface (Fig. 3(a)) can be split into two distinct parts: the
annular region Rg = {(x,y) : x* + y? < 11.5%} and its complement Rp =
R?\Rg. On Rg, the earliest numerically detected escape occurs at the origin
for @ ~ 0.4905. The escape surface is radially symmetric and increases
on concentric rings, thus creating a rotationally-symmetric paraboloid. In
contrast, for (x,y) € Rp, the escape surface is no longer radially symmetric,
and is instead a periodic tile pattern, reflecting the initial data. The minima
occur at p = 0.738 (yellow/green regions) and the maxima at p ~ 0.812 (red
lines between yellow/green regions).

For this source term and initial condition, the buffer surface is given
by and the memory surface is given by . In Fig. (b), we plot
min{ Wput (X, Y), fmem (X, Y)}. On Rg, the minimum is given by the buffer sur-
face, whereas it is given by the memory surface on Rp. The buffer surface
predicts that the earliest onset occurs at the origin at p ~ 0.4908. The values
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of Wyt increase in a radially symmetric fashion until u ~ —py = 0.75 on the
boundary of Rg. Then, for (x,y) on Rp, the memory surface predicts the
onset. (Compare Figs. [§(a) and (b).)

The difference |tese (X, Y) — min{ s (X, Y), Hmem (X, Y)}| is small through-
out, as shown in Fig. [3[c). The difference is especially small (of the order
of the neglected terms in the asymptotic expansion) near the onset at the
origin, which is at the minimum of the buffer surface, and also near the local
minima of the memory surface.

4.3 DHB with stripe source term

Stripe source terms are also of fundamental interest. For example, chemical
reactions irradiated with constant intensity light filtered through stripe masks
can produce complex patterns, see [7, [I7] and references within.

Here, we use a simple model for a strictly positive stripe source term,

o) =145 Y (Hix—x) ~Hix—(a+h),  (34)

k=—2

where h is the stripe width, x, denotes the left edge of the k-th stripe, and
Xk+1 — Xk = A > h. We set Xg = —1.25, h = 25, and A = 10.

(a) q o. L\‘S(b) ] 0. 1&5<C)
20 0 220 "
10 10 10
Y0 0480y 0 0480 Y 0
)
10 10 10
20 20 -20
0475 0.475
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Figure 4: (a) The surface ese(X,y), shown here in the projection onto
the (x,y) plane, is where the hard onset of oscillations occurs. It has been
obtained from numerical simulation of with stripe source term Is(x,y)
and constant initial data Ag(x,y) = 1 given at pp = —1. (b) The buffer
surface Wput(x,y) defined by (19), with g given by the linear combination of

and . (c) The difference |tesc (X, Y) — tpur (X, Y)|. The parameters are
d=1,wyg=0.5 «=0.2, and ¢ = 0.01.

For the PDE , the surfaces [esc(X,y) (calculated from direct numerical
simulations) and Hpue(X,y) (calculated from and (27)) are shown in

17



Fig. [[(a) and (b), along with the difference in Fig. [f|(c). From the plot of
Hesc (X, Y), we see that the hard onset of oscillations occurs first at the points
where Is(x,y) has its maximum, i.e., inside the stripes. See the green stripes
in the plot of Hese (X, y) in Fig. (a). The buffer curve e (x,y) also has local
minima inside the stripes (blue stripes in Fig. [{b)), and these stripes have
approximately the same width as those of the escape surface. The difference
in the green and blue stripes is of O(e/¢).

In the complementary regions, the PDE simulations show that the dura-
tion of the DHB is longer. The escape surface lies just below wq, by about 2¢
(see the yellow stripes in Fig.[4(a)). In the complementary regions, the buffer
surface transitions more gradually to its local maxima, which also occur at
the local minima of the source term. Here, the difference is of O(e4/¢).

The narrow red strips between the green and yellow bands in Fig. [4(a)
correspond to the regions where the Heaviside function has a discontinuity.
This discontinuity is smoothed out in the predicted buffer surface Fig. (b),
so that ppue(x,y) is smooth and continuous across the whole domain. This
difference is highlighted in Fig. (c) There, the error is small and of O(e+/¢)
throughout the blue regions, and is of O(e) in the thin strips where the
Heaviside function has jump discontinuities.

We add that, in this simulation with the stripe source term and the
constant initial data given at g = —1, the memory surface @ lies well above
the buffer surface for all (x,y). Hence, the escape time is determined
exclusively by the buffer surface, as reported.

4.4 The competition between (X, y) and (X, y)

In the above simulations, we have shown that at each point (x,Y), Hesc(X,Y) ~
min(Upem (X, Y), Wout(X,Yy)) to leading order. Therefore, in effect, there is
a competition at every point (x,y) between Ay (x,y,p) and A,(x,y, ) in
which the first one that ceases being exponentially small determines the
maximal duration of the delay in the Hopf bifurcation to leading order.

The memory surface Upem(x,y) depends to leading order on the initial
time po. Then, at O(e), it also depends on the logarithm of |Ay (x,y; w)l.
Recall, for example, @, , and .

The space time buffer surface ppu(x,y) (recall in Sec. is deter-
mined to leading order by wg, which is the frequency at the instantaneous
Hopf bifurcation, and then at O(e) by the logarithm of the Stokes term
g(x,y,wo(l+1)) in . Indeed, as highlighted by the analysis in the com-
plex p plane in Appendix [A] the Stokes line through the saddle point at
n = —iwg crosses the negative p-axis at p = —wy (see Fig. @ Hence,
the initial time pg is to the left of that here, and the contour used to find
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A, (x,y, u) for values of u > 0 goes through that saddle. The saddle point
method (applied in App.[A]) shows that the function G(x,y, 1) given by
arises due to passage over the saddle at —iwgy. For each u > 0, G(x,y, 1)
measures the deviation of the solution A, from the repelling QSS. On p > 0,
it stays exponentially small at least until u reaches +wy, where the other
Stokes line through the saddle reaches the positive p-axis. Then, as pu slowly
increases beyond wy, G(x,y, 1) ceases to be exponentially small —and grows
to become O(1)- in a spatially-dependent manner. That is why the buffer
surface is defined by (19), i.e., by when and where |G| = 1.

Therefore, at O(1), g and wy determine the competition, and at O(¢)
it is determined by the logarithmic terms. Moreover, for any finite value of
¢, there can be a changeover between the two terms for which one wins the
competition, since in general the logarithmic terms in both expressions can
grow due to their spatial dependence. (See for example Fig. )

5 DHB in the 2-D Brusselator model

In two space dimensions, the Brusselator model with a source term and a
slowly varying rate constant is given by the following system:

we = a(x,y) — (1 +b)u+uv + ed, Au,
ve = bu —u?v + ed, Av, (35)
bt = E.

Here, the independent variables are (x,y) € R*andt > 0, A = aa—;—l-aa—:g, and
the subscript t denotes the partial derivative on t. The dependent variable
u denotes the concentration of the activator chemical, and v that of the
inhibitor species. The small parameter 0 < ¢ < 1 measures the separation
in the time scales. The spatially-dependent source term, a(x,y), is taken to
be positive, bounded, O(1) with respect to ¢, and smooth. The parameter
b > 0 denotes a rate constant that slowly increases in time, and d., d, > 0
are the diffusivities of the activator and inhibitor.
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5.1 Hopf bifurcation of the quasi-steady state
The Brusselator PDE has a quasi-steady state (QSS),

ugss(x,y) = a(x,y) + €A (dua(x,y) + dVL) +0O(e?)

a(x,y)
. b 3 o dvb . 2
vass(x.y) = aboy) Ty ((1 b)a(x,y) bd”a(x’y)> oL,

(36)

We perform a linear stability analysis about the QSS by setting u = uggg+1
and v = vqgs + V. The linearized system for 1t and v is

U | u d, 0 Al
I

Qustngs — (1 + b) uéss :|
b — QUstVQSS —LL(QQSS )

Hence, by setting Tr(M) = 0, we find that the PDE exhibits a spatially-

dependent Hopf bifurcation at b = by (x,y), where

where

|

1+ a® +2eadyAa+ O(e?)
1+ 2ed,1=22AL + 9(e2)

a a

bH(X,y) = (37>

and we have written a for a(x,y). At each point (x,y) € R2, the QSS is
linearly stable for b < by(x,y), and linearly unstable for b > by(x,y).
Moreover, the frequency, wyy, at by is wy = a(x,y) + O(e).

Remark. The Brusselator model exhibits (super-critical) Turing bifur-

cations. For example, with source a(x,y) = ag + €a;(x,y) + O(e?), where
2

ag > 0 and O(1), Turing bifurcations occur at bt = <1 + ,/i—tcm) + O(e).

The homogeneous state bifurcates into a spatially periodic state. The param-

eter values we have studied here were chosen so that the Turing bifurcations

do not impact the DHB phenomenon. We think it would be interesting also
to study the interactions between the two bifurcations.

5.2 Spatio-temporal dependence of the delayed Hopf
bifurcations in the Brusselator model

In this section, we present the results of numerical simulations showing the
spatio-temporal dependence of the delayed Hopf bifurcations (DHB) in the
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Brusselator model . We take the initial value b(ty) < by(x,y) for all
(x,y), so that the system slowly passes through the Hopf bifurcation by (x, y)
as b slowly increases, recall . We work primarily with a stripe source
term,

as(x,y) :1+€“Z(H(X—Xk)—H(X—(Xk‘i‘h))), (38)
K

where o > 0, xx denotes the left edge of the k-th stripe, X, 1—xx = A, h < A
is the width of the stripe, and the stripes are sufficiently well-separated.

In each of the simulations we carried out, the solutions rapidly approach
the attracting QSS for b < by (x,y) and then, after the instantaneous Hopf
point is crossed, they stay near the repelling QSS for long times, of O(1/¢)
duration in the fast time t. This is the delay in the Hopf bifurcation, and the
solutions leave a neighborhood of the QSS in a spatially-dependent manner.
Moreover, they do so by making a large rapid jump away from it, so that
there is a hard onset of large-amplitude oscillations.

For the representative simulation shown in Fig. 5] we set o« =5, h = 0.1,
xop = —0.05, and A = 0.3. The initial data is spatially periodic

Wo(x,y) = a(x,y)+esin(my(3x—2)), wo(x,t) = a(zf’y) +¢ cos(m?xy). (39)
The initial value of the parameter is by = b(tg) = 1.5 (see Fig. [5f(a)), which
is below the Hopf point b = 2 here. As the parameter b slowly increases, the
solution rapidly approaches the attracting QSS, and the component of the
solution given by the spatially periodic initial data decreases. By the time
b = 1.7, the remnant of the initial data is faint (see Fig. [f(b)). Then, when
b reaches b = 2, where the instantaneous Hopf bifurcation happens in ,
there is no visible trace of the initial data (see Fig. [f|c)).

As b continues to increase, the solution remains near the repelling QSS
(see Fig. [f|(d), where b = 2.2). It is not until b = 2.4 that small amplitude
temporal (post-Hopf) oscillations begin to set in (see Fig. (e)). Also, the
solution has regained a significant component given by the shape of the initial
data. The oscillations rapidly become large amplitude oscillations when b
reaches larger values (see Fig. [f|(f)-(h), where b = 2.6, b = 2.8, b = 3.0, resp.,
and we note the changes in the vertical scales), and hence the observed onset
is a hard onset. Also, by this time, there is significant interaction between
the components coming from the initial data and the stripe source.

Further increases in b result in spatio-temporal patterns, such as the
formation of spiral waves (see Fig. [5fi)). These spatial patterns arise from
the interaction of the oscillations (which occur beyond the memory surface),
the stripe source, and the diffusion.
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Figure 5: DHB in the 2-D Brusselator with stripe source and spatially
periodic initial data given at b(tg) = 1.5. Panels (a)—(i): the solution
u(x, y) rapidly converges to the source-dependent QSS, stays close to the QSS
well-beyond the instantaneous HB at b = 2, and exhibits a hard transition to
oscillations. Note the different axes on (a)-(i). Panel (j): space-time evolution
along y = 0. The parameters are ¢ = 0.01,d, =1 x 1073, d, =5 x 1074,
x=>5,h=0.1,xog =—0.05, and A =%y, 1 —xx = 0.4.
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A cross-section through y = 0 is shown in Fig. [5[j). The space-time plot
shows that the solution stays close to the QSS (blue state) well past the
instantaneous HB (red line) and the large-amplitude oscillations do not set
in until b ~ 2.5. Cross-sections taken at other values of y are qualitatively
the same, with some slight shifts in x.

Overall, we find that these primary features of DHB in the 2-D Brusselator
—the long, spatially-dependent DHB and the hard, spatially-dependent onset
of large-amplitude oscillations— are the same as those observed for DHB
in the CGL PDE in 2-D (Section [4)), as well as for DHB in PDEs in 1-D
[3, 18, 26], in analytic ODEs [4], 16}, 211, 136, 137, [38], [39], 40}, 46}, 48, [49], and in
the applications cited in the Introduction.

6 Conclusions

In this article, we studied a pair of prototypical pattern-forming PDEs in
two space dimensions. In both, an attracting quasi-steady state (QSS) be-
comes a repelling QSS as a key parameter varies slowly in time through a
generic, super-critical Hopf bifurcation. We reported on the discovery of
delayed Hopf bifurcations (DHB) in which solutions of these PDEs in 2-D
stay near the (post-Hopf) repelling QSS for long, spatially-dependent peri-
ods of time (O(1/¢) fast time), before the spatially-dependent hard onset of
large-amplitude oscillations occurs.

First, we generalized the asymptotic and numerical results of [I8] for
DHB in the CGL PDE in one space dimension to two dimensions. We in-
troduced the spatio-temporal memory surface ppem(%,y) and the spatio-
temporal buffer surface w,ue(x,y), and we derived asymptotic formulas for
them in the CGL PDE (recall Sections and [3.2). These are the 2-D
analogs of the 1-D memory and buffer curves introduced in [I§].

The memory surface ppen(X,y) is determined by when the homogeneous
solution of the linearized equation reaches amplitude one, and hence stops
being exponentially small. It is labeled the memory surface for the following
reason: While the memory of the initial data fades quickly after the initial
time py < 0, because the solution rapidly (exponentially in time) approaches
the attracting QSS before the instantaneous Hopf bifurcation, the memory
of it is not lost. On the contrary, the component of the solution given by
the initial data re-emerges (or resurges) in a spatially-dependent manner at
Wmem (X, Y) to leading order. The asymptotic formula for pyen (X, y) quantifies
its dependence on py and on the spatial structure of the general bounded,
smooth, initial data Ag(x,y). We applied it to several structurally different

types of data (see (9)), (12), and (15)).
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The buffer surface ppue(x,y) is determined from the particular solution
Ap(x,y,u) by when |G| = 1, recall . It plays a central role in the
dynamics of solutions for which initial data Ag(x,y) is given at pg < —wyp. In
particular, to leading order, all solutions with initial data given at py < —wy,
including those on the attracting QSS, leave an O(1) neighborhood of the
repelling QSS when p reaches the buffer surface, irrespective of how large
IWol is, i.e., irrespective of far in the distant past the solutions approached
the attracting QSS. Furthermore, we derived the asymptotic formula for
Wput (X, Y), finding its dependence on the frequency wq at the Hopf point and
on the spatial structure of general, smooth, bounded source terms. Also, we
applied the general formula to the cases of constant, Gaussian, periodic, and
stripe sources, see , , , and .

Overall, for solutions of the CGL PDE (I) with initial data given at
o < 0, we found that the spatially-dependent duration of the DHB is given
by Hese(X,Y) = min{tmem (X, Y), tout (X, Y)} to leading order. Also, we found
that there is good quantitative agreement between the asymptotic formulas
for wmem(x,y) and ppue(x,y) and the numerically calculated escape times
Uesc (X, y) for different types of initial data and source terms, see Section .

We distinguished between the DHB observed for solutions with initial
data given at pg € (—wp,0) and for those with initial data given at py <
—wy. For the former (py € (—wy,0)), there are points at which the mem-
ory surface is reached before the buffer surface. We have shown examples
where the entire memory surface lies below the buffer surface in 3-D, i.e.,
Wmem (X, Y) < Wput(x,y) for all (x,y) (recall the first and second representa-
tive simulations in Section. There are also examples in which only a por-
tion of the memory surface lies below the buffer surface. In this case, Ag(x,y)
is such that ppem(X,y) grows with [|(x,y)| and then exceeds ppue(x,y) on
some part of the domain, since € has a small but finite value.

For the latter (where py < —wy), the buffer surface is reached first as
u slowly increases. That is, there are points (x,y) at which ppue(x,y) <
Mmem (X, Y) (noting that equality can arise when py = —wy). Crucially, there
are two cases: (1) tpur(X,Y) < Hmem(x,y) for all (x,y), and (2) ppur(x,y) <
Wmem (X, Y) in some regions while tpem(X,Y) < Upur(X,y) in the complemen-
tary regions. The example in Section illustrates case (1), and an example
of case (2) is given in Section[d.2] In case (2), the source term is such that it
grows with ||(x,y)|| and then exceeds pyem(X,Yy) on some part of the domain.
In all simulations, we found pes(x,Y) &~ min{tmen (X, Y), Hpur (X, Y)}-

Finally, we showed numerically that DHB occurs in the Brusselator model
in two space dimensions. For several source terms a(x,y), the solutions
spend spatially-dependent, O(1/¢) long times near the repelling QSS. Also,
the spatially-dependent onset of oscillations is a hard onset, as shown for
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example in going from Fig. [f(e) to (f), where we note the change in scales.
Moreover, after the oscillations have set in, there are dynamically complex
interactions between the source term and the re-emergent component given
by the initial data.

Looking ahead, we observe that it may be possible to extend the results
for the CGL PDE in 2-D to include some source terms I,(x,y) that are not
strictly positive or bounded. For example, in Section 8 of [I8], we showed
that the asymptotics for the buffer curve in the 1-D CGL PDE extend to
include bounded sign-changing source terms (such as cos(x)) and even some
algebraically growing source terms (quadratic in space), and that the asymp-
totics still agree well with the results of numerical simulations in 1-D. Also,
it may be possible to extend the results to include large-amplitude source
terms and O(1) diffusivity, as was done for the 1-D CGL PDE in Sections 9
and 10 of [I8§].

We think it would be of interest to put the Brusselator PDE into
normal form for dynamic super-critical Hopf bifurcation, and to carry out an
analysis of the linearized equation in the complex time plane similar to that
done for the CGL PDE in 2-D. It would be of interest to determine where
the saddle points are and where the Stokes lines through them cross the real
time axis, as well as to derive the homogeneous and particular solutions of
the linearized equation and hence determine the spatio-temporal memory
and buffer surfaces.

The spatially-dependent source terms studied here are similar to those
studied in reaction-diffusion equations in two (or more) spatial variables. In
[28], the authors established the conditions under which radially symmetric
inhomogeneities create coherent structures, including sources, contact de-
fects, and sinks. Also, spatial inhomogeneities have been analyzed in the
Swift-Hohenberg and Ginzburg-Landau equations in 2-D in [24] and refer-
ences therein. The authors demonstrate the existence of weakly-deformed
stripe patterns, which are small perturbations of the uniform vertical stripes,
where the small parameter measures the amplitude of the spatial inhomo-
geneity. While these studies are for fixed parameters, it might be of interest
to study the spatio-temporal dynamics that result from the interactions be-
tween these types of heterogeneities and slow passage of a parameter through
a Hopf bifurcation.
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A Calculation of A,(x,y, ) using the saddle
point method

In this appendix, we apply the saddle point method to find the asymptotic
formula ((7)) for the particular solution A, (x,y, 1) of the linearized CGL PDE.
In the complex [t plane ([t = fig + ifi1), the phase function in By, is

&+ = — (i + iwy)? (40)

where

¢ :_% (i — (i + wo)?) and P = —fig(fir + wo). (41)

This phase has a saddle point at L = —iwg. The level sets of ¢ are hyperbolas
and also known as Stokes lines. The Stokes lines with ¢ = 0 through the
saddle (which are the asymptotes of the hyperbolas) bound the valleys and
hills. They may be parametrized by pg via iy = £g — wq. Also, the level
sets of P are hyperbolas (with asymptotes given by the axes), and they are
referred to as anti-Stokes lines.

Figure 6: The contour C, = Cy1 |J Cr2|J Cr3lJ Cry in the complex ft plane.

Let & > 0 be a small number, independent of ¢. We fix an arbitrary
value of w € [8, wg]. We consider the contour C, = Cy1|J CroJ CrslJ Cra,
where C1 = [Ho, —wql; Cro is the segment of the Stokes line iy = —[ir — wyq
from —wy down to the saddle at —iwy; C,3 is the segment of the Stokes line
iy = g — wp from the saddle up to the point q, = /WK + i(\/Wor — wy),
for this fixed value of u; and, C,4 consists of the segment of the steepest
ascent curve p = —wop from ¢, up to the point n. See Figure [6]

We evaluate the integrals in the same manner as in Section 2.3 of [18].
We take any initial B, (x,y, 1o) with py < —wy on or near the attracting
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QSS, and we track it along C, to the fixed value p. At that point,

By (x,y, 1) =Jr1 + Jro + Jr3 + J1s,  where for & < p < wy,

(42)

Iy = gx,y, u— ez FHiwo’qn 5 =123 4,

gl
Ve e,
The integral J,; along the segment C.; = [g, —wy] is evaluated using the
method of steepest descents along the contour formed by the union of the
Stokes line through 1 = —py out to —oco —iwg and the Stokes line back from
—00—1iwg up to = —wg.n The dominant contribution comes from the final
segment along the latter Stokes line near 1 = —wy.
wd
) } e (43)

I = {ﬁ(l +1i)g(x,y,np+ wo) + O (e
2(1)0

Next, we parametrize Cyo by fg, with pr(ftr) = —(fgr + wg), and fig :
—wy — 0. Hence, —1(fL + iwg)? = if% for all i on Cro. It is purely
imaginary, corresponding to the fact that C.y lies on a Stokes line ¢ = 0.
Hence, for each ft on C,q, the integrand is of the form to which the method
of stationary phase applies, namely g - e""#®) with h(fig) = ft%. Moreover,
the end point 1 = —iwq of C,2 (g = 0) is a point of stationary phase, since
h’(0) = 0 and h”(0) = 2 # 0, and it is the only such point along Cyy. [For
the general method in which an end point is a saddle (or turning) point, see
for example Section 4.1 of [35], especially formula (4.14).]

Applying the method of stationary phase, we insert the parametrization
of Cr9, use v.= —pg, Taylor expand about v .= 0 (i.e., i = —iwy), and
observe that the dominant contribution asymptotically comes from the point
of stationary phase at the saddle,

o

0 i~
Jos = J g%y, 1t — [fir — g + wo)]) e (1 — 1) dfi
.

e

(1-1) on gy, 4 [V +i(—v + we))e¥ av
0

_ %(1—1)9(Xay,u+iwo)L (1+0(F)et¥av (44)

= ,/thf(o)eif(l —1)g(x,y, u +iwg) + O(Ve)

Tt
= \/;g(x,y, +iwe) +O(Ve), for any p €[5, wyl.

- el 5l

This leading order term in J.o will turn out to be half of the leading order
term in the total integral for By, (x,y, u) for each p € [5, wy.
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Next, we show that J,3 gives the other half of the leading order term
in Bp. From the definition of C,3, we have that, for any p € [8, wol, J3 =
% ﬂriwo g(x,y, p—fi)e 2 (ATiwo)* q i We use [ig to parametrise Cys as fij =
R — Wq, now with fig : 0 — /wou. Hence, —%(}1—|—iw0)2 = —ip% along C,3;
and, for each 1 on C,3, the integral is also of the form to apply the method
of stationary phase, g - ec™™) with h(fix) = —fi%. Moreover, the initial
point 1 = —iwg of Cy3 (g = 0) is a stationary phase point, since h'(0) =0
and h”(0) = —2 # 0, and it is the only such point along C,5. We find

1 Wor B o -9 o
J 9%,y 1 — [itg + iliix — wo)l)e~ (1 +1)diig

0

1 . Wok i~2 N o
=—9(x,y,u+1wo)J e TR (1 4 O(fie)) (1 + ) diig

Ve o (45)
= |————g(x,y, u+iwg)e T (1 +1) + O(Ve

sy 90 ot e 149+ 0(VE)
= gg(X,y,u+iwo)+O(\/E), for any 11 € [, wol.

Finally, we calculate J,4. Implicitly parametrise C,4 using o,

1, . 1 .
Cra: —§(u+1w0)2:—5(u+1w0)2+6.

The parameter o starts from —%(wg — u?) at the point g, and increases
monotonically along C,4 to zero at w. The explicit representation is

[N

(o) = —iwg + [(u+ iwg)? — 20] )

The integration along C,, gives

9.\ = /oo nriwo)’ JO g%y, i+ iwo — [ + iwg) — 20]2)e?
T4 T . N
e u?) V(1 +iwg)? — 20

Hence, one finds

T4 — H"‘le (H‘f’lwﬁ)?’

46
€ — 2 (pt+iwg)? ( )
O\ riwgr )| € -
0
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Summing (43), (#4), [5)), and (46)), we have that, for § < p < wy,
Bp(x,y, 1) =Jv1 + o + i + T4

_ _\/EIa(Xay)efyls(quiwo)z
1+ iwo
3 (Ia(xay) + d(p + iwo) Al (%, y)
4+ €2 :
(4 iw)?

+ O E%efg%(u+iw0)2
(1 + iwg)?
+V2mg(x,y, u+ iwg) + O(Ve).

Finally, we translate the formula back to the dependent variable A, complet-
ing the derivation of (7).

72—15( iwg)?
)e p+iwo (47)
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