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Abstract. The stability of nonlinear waves on spatially extended domains is commonly probed4
by computing the spectrum of the linearization of the underlying PDE about the wave profile. It is5
known that convective transport, whether driven by the nonlinear pattern itself or an underlying fluid6
flow, can cause exponential growth of the resolvent of the linearization as a function of the domain7
length. In particular, sparse eigenvalue algorithms may result in inaccurate and spurious spectra in8
the convective regime. In this work, we focus on spiral waves, which arise in many natural processes9
and which exhibit convective transport. We prove that exponential weights can serve as effective,10
inexpensive preconditioners that result in resolvents that are uniformly bounded in the domain size11
and that stabilize numerical spectral computations. We also show that the optimal exponential rates12
can be computed reliably from a simpler asymptotic problem posed in one space dimension.13
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1. Introduction. Spatiotemporal patterns arise in many natural and physi-16

cal systems across vast scales. Examples include vegetation patterns in semi-arid17

environments [6, 25] and mussel beds [15], oscillating chemical reactions [28, 29],18

and traveling-wave patterns of electrical activity in neurons and cardiac dynamics19

[16, 13, 14, 1]. Investigating the formation and stability of these patterns can provide20

insight into their specific roles and an enhanced understanding of the system.21

Spatiotemporal patterns are commonly studied in reaction-diffusion systems of22

the form ut = D∆u+ f(u) where u = u(x, t) ∈ Rn, the smooth nonlinearity f repre-23

sents local dynamics, and spatial coupling is mediated through the Laplacian. These24

equations have been studied both on the unbounded domain x ∈ R2 and on bounded25

domains x ∈ [0, L]2 of length L coupled with appropriate boundary conditions. Pat-26

terns that rotate or travel uniformly in time are stationary in appropriate co-rotating27

or co-moving frames and can therefore be computed efficiently and accurately through28

numerical root-finding schemes. To characterize the stability properties of such pat-29

terns, it is often informative, and in many cases sufficient, to compute the spectrum30

of the linearization L of the model system evaluated at the patterned state.31

The numerical computation of the spectrum of L is not always straightforward32

though. It is well documented that a differential operator L posed on the one-33

dimensional domain x ∈ [0, L] with L ≫ 1 large can exhibit spurious eigenvalues34

when the norm of its resolvent (L − λ)−1 grows as L increases due to numerical in-35

stabilities. This phenomenon was investigated, for instance, for constant-coefficient36

advection-diffusion operators in [10, 21] via the notion of pseudospectra [26]. In [22],37

the lower bound ∥(L−λ)−1∥L2(0,L) ≥ eη(λ)L was established for operators with asymp-38

totically constant coefficients, where the exponential rate η(λ) was linked explicitly to39

the spatial eigenvalues ν(λ) of the matrix A(x;λ) that arises when rewriting the eigen-40

value problem (L−λ)u = 0 as a first-order spatial dynamical system d
dxv = A(x;λ)v.41
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2 S. DODSON, R. GOH, AND B. SANDSTEDE

The recent numerical computations published in [11] showed that the use of exponen-42

tial weights of the form e−η(λ)x stabilizes eigenvalue computations of fluid-flow ei-43

genvalue problems with asymptotically constant coefficients on channel-like domains44

x = (x,y) ∈ [0, L]× Ω with Ω bounded and L≫ 1 large as suggested in [10, 21, 22].45

Of interest to us are spiral-wave patterns. These nonlinear waves arise in appli-46

cations including oscillating chemical reactions of the Belousov–Zhabotinsky reaction47

[4, 12, 28] and in cAMP signaling in cellular slime molds [17], and they have also been48

linked to abnormal cardiac rhythms [16, 13, 14, 1]. Spiral waves have thus been the49

subject of a host of analytical, numerical, and experimental studies; see, for example,50

[18, 7, 5, 2, 3, 24, 27] and references therein.51

A rigidly-rotating spiral wave has a fixed spatial profile that converges to a peri-52

odic wave-train in the far field away from the core and rotates in time with a constant53

temporal frequency. Hence, spiral waves are stationary in appropriate co-rotating54

coordinate frames. Their stability on bounded disks BR(0) can be understood via the55

spectrum of the linearization LR. In particular, many instabilities, including transi-56

tions to meander and drift, period-doubling bifurcations, and spiral-wave break-up,57

have been shown to be caused by eigenvalues (see [24, §12] for an overview of these58

phenomena and further references), and it is therefore important to understand how59

reliable numerical eigenvalue computations are for LR.60

The computation of eigenvalues of LR is challenging for even moderate values61

of the radius R, since convective transport on the unbounded plane towards the far62

field manifests itself as growth of the resolvent of the non-normal operator LR as R63

increases. While it is known that, with the exception of a discrete set of eigenvalues,64

the spectrum of LR converges to a collection of algebraic curves, termed the absolute65

spectrum Σabs, as the radius R grows [22, 23, 24], computations often paint a very66

different picture. As the domain radius increases, the spectrum appears to approach67

a different set of curves, given by the essential spectrum of the unbounded-domain68

linearization, that is distinct from the theoretically predicted limit. This unexpected69

eigenvalue behavior is caused by the large resolvent norm. Given the relevance of70

eigenvalues for spiral instabilities, it is therefore important to be able to extract ei-71

genvalues reliably from spectral computation. In other words, we need to understand72

when we can, and cannot, trust numerical eigenvalue computations in this context.73

In this paper, we demonstrate that the spectra of spiral waves can be computed74

accurately by using preconditioners that consist of exponential weights of the form75

eη(λ)|x|. Notably, Theorem 3.8 characterizes (1) the nonempty set of λ for which the re-76

solvent grows exponentially with the lower bound ∥(LR − λ)−1∥L2(BR(0),RN ) ≥ eη(λ)R77

for some η(λ) > 0, and (2) the set of λ for which the resolvent is bounded uni-78

formly in R. Theorem 3.9 shows that the resolvent is bounded uniformly in R with79

∥(e−η(λ)|x|LReη(λ)|x| − λ)−1∥L2(BR(0),RN ) ≤ C when posed on an appropriate expo-80

nentially weighted space. Furthermore, we show how the rates η(λ) can be calculated81

accurately and efficiently from the spatial eigenvalues of the asymptotic far-field oper-82

ator: the resulting exponential weights therefore serve as inexpensive preconditioners.83

The paper is outlined as follows. We review the case of convection-diffusion op-84

erators in Section 2 to illustrate the relevant mathematical terminology, techniques,85

and phenomena. The necessary background on spiral waves, their spectra, and the86

statements of the main results are presented in Section 3 and their proofs in Section 4.87

In Section 5, we demonstrate that the proposed use of exponential weights as precon-88

ditioners indeed facilitates the accurate numerical computation of spiral spectra in89

the Barkley model. We emphasize that, while our main results are stated for spiral90

waves, the presented numerical algorithm can be deployed also in other applications91
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as demonstrated by the convection-diffusion operator and the work in [11].92

2. Review: Convection-diffusion operators. To motivate our results, we93

illustrate the phenomena of interest using the often studied convection-diffusion oper-94

ator LRu := uxx+cux for positive drift speed c > 0 on large intervals x ∈ (−R/2, R/2)95

of length R ≫ 1 with Dirichlet boundary conditions u|x=±R/2 = 0. The results de-96

scribed here can be found in [22, 21]1, and we therefore keep the discussion mostly97

informal. The spectrum of LR is given by ΣR = {− c2

4 − n2π2

R2 : n ∈ N}. As R→ ∞, the98

set ΣR converges locally uniformly to the absolute spectrum Σabs = {λ ∈ C : λ ≤ − c2

4 }99

in the symmetric Hausdorff distance. Next, we consider the spectrum of L∞ posed on100

the whole line R, which can be analysed by writing the eigenvalue problem L∞u = λu101

as the first-order spatial dynamical system102

d

dx

(
u
v

)
= A(λ)

(
u
v

)
, A(λ) =

(
0 1
0 −c

)
.103

The eigenvalues ν(λ) of A(λ), often referred to as spatial eigenvalues, satisfy the104

dispersion relation λ = ν2 + cν. We order them by real part, with Re ν−1(λ) < 0 <105

Re ν0(λ) for λ > 0, so that ν−1(λ) = − c
2 −

√
c2

4 + λ and ν0(λ) = − c
2 +

√
c2

4 + λ,106

and define the spectral gap J0(λ) = (−Re ν0(λ),−Re ν−1(λ)) ⊂ R. The spatial107

eigenvalues can be used to characterize both the absolute spectrum via108

Σabs = {λ ∈ C : Re ν0(λ) = Re ν−1(λ)} = {λ ∈ C : J0(λ) = ∅}109

and the Fredholm boundary ΣFB of L∞ posed on L2(R) via110

ΣFB = {λ ∈ C : ν0(λ) ∈ iR} =
{
λ ∈ C : λ = −ℓ2 + icℓ, ℓ ∈ R

}
.111

Since the operator has constant coefficients, ΣFB is equal to the essential spectrum.112

Instead of the usual L2 space, we can also pose L∞ on the exponentially-weighted113

function space L2
η(R,C) := {u ∈ L2

loc : |u|L2
η
:= |u(x)eηx|L2 < ∞} with η ∈ R, which114

is equivalent to considering the conjugated operator L∞,η := eηxL∞e−ηx on L2(R).115

The Fredholm boundary ΣFB,η of L∞,η is given by116

ΣFB,η = {λ ∈ C : ν0(λ)− η ∈ iR} =
{
λ ∈ C : λ = −ℓ2 + iℓ(c− 2η) + η2 − cη, ℓ ∈ R

}
.117

In particular, the spectrum is shifted to the left for weights η with 0 < η ≤ c/2.118

For R ≫ 1, the works [21, 22] show that the resolvent operator (LR − λ)−1 is119

bounded uniformly in R ≫ 1 for each λ to the right of ΣFB, that is, for all λ for120

which 0 ∈ J0(λ). In addition, these papers show that the norm of (LR − λ)−1 grows121

exponentially in R for λ to the left of ΣFB.122

Proposition 2.1 ([21, Thms 5 & 7], [22, Prop 2]). Let λ∗ ∈ C \ Σabs with 0 ̸∈123

J0(λ∗) so that Re ν−1(λ∗) < Re ν0(λ∗) < 0, then there are constants δ, C,R∗ > 0 so124

that ∥(LR−λ)−1∥L2(−R/2,R/2) ≥ Ce|ν0(λ∗)|R uniformly in R ≥ R∗ for all λ ∈ Bδ(λ∗).125

Furthermore, it was shown in [22] (and this can also be inferred from the results126

in [21]) that the resolvent stays bounded uniformly in R provided it is posed on L2
η127

for an appropriate weight η.128

1We remark that the results in [22] apply more generally to differential operators of order n with
asymptotically constant coefficients and arbitrary separated boundary conditions.
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4 S. DODSON, R. GOH, AND B. SANDSTEDE

Fig. 1. Shown are the eigenvalues of LR,η with c = 1 for different values of R with η =
0, 0.25, 0.5. Eigenvalues not visible lie in Σabs = (−∞,−c2/4]. The numerical spectrum for R = 800
with η = 0.5 = c/2 agrees with the theoretical spectrum within 5× 10−3 accuracy.

Fig. 2. Shown are the pseudospectrum Λϵ(LR), the Fredholm boundary ΣFB,η, and the nu-
merical eigenvalues for a range of weight values η with c = 1. The color scale reflects the minimal
singular value of the finite-difference matrix for LR − λ on a log10 scale and therefore provides the
pseudospectrum contours of Λϵ. Eigenvalues were found using MATLAB’s direct solver eig.

Proposition 2.2 ([22, Prop 1]). Let λ∗ ∈ C \ Σabs with 0 ̸∈ J0(λ∗) and fix η ∈129

J0(λ∗), then there are constants δ, C,R∗ > 0 so that ∥(LR − λ)−1∥L2
η(−R/2,R/2) ≤ C130

uniformly in R ≥ R∗ for all λ ∈ Bδ(λ∗).131

Thus, while the eigenvalues of LR approach the absolute spectrum Σabs as R132

increases, the norm of the resolvent (LR − λ)−1 will grow exponentially in R for λ to133

the left of the Fredholm boundary ΣFB, and in particular near the absolute spectrum134

Σabs. From a numerical perspective, the eigenvalue problem is therefore ill-conditioned135

for R large, and iterative eigenvalue solvers may not be able to locate eigenvalues136

accurately [10, 21]. Indeed, as shown in Figure 1, the eigenvalues found by MATLAB’s137

iterative solver eigs for the operator LR are inaccurate for all sufficiently large R:138

instead of approaching the theoretical limit Σabs, the eigenvalues converge to ΣFB.139

Preconditioning with appropriate exponential weights by computing the eigenvalues140

of LR,η = eηxLRe−ηx recovers the predicted eigenvalues for weights η ∈ J0(λ).141

We illustrate the growth of the resolvent by computing the ϵ-pseudospectrum, de-142

fined by Λϵ(LR) := {λ : ∥(LR − λ)−1∥L2(−R/2,R/2) ≥ ϵ−1} with ϵ > 0, numerically via143

the minimal singular value of the finite-difference approximation of LR. In Figure 2,144

the boundaries of the pseudospectrum Λϵ are indicated as contour lines for a range145

of values of 0 < ϵ ≪ 1. We note that the ϵ-pseudospectra are not localized around146

eigenvalues as would be the case for normal operators, and that to the left of ΣFB,η147

the norm of the resolvent grows exponentially. Using positive weights η > 0 shifts the148

Fredholm boundary and the pseudospectra Λϵ(LR) to the left. The maximal weight149
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value η = c/2 symmetrizes the conjugated operator LR,c/2 := ∂xx − c2/4 so that the150

resolvent is bounded in terms of the inverse of the distance of λ to the spectrum of151

LR uniformly in R.152

3. Main results. Before stating our results, we summarize the hypotheses we153

shall need. We focus first on one-dimensional wave trains, which constitute the as-154

ymptotic limits of spiral waves. Consider the reaction-diffusion system155

(3.1) ut = Duxx + f(u), x ∈ R, u ∈ RN ,156

where D = diag(dj) > 0 is a positive, diagonal diffusion matrix and f is a smooth157

nonlinearity. We assume that, for some non-zero temporal frequency ω∗ and a certain158

spatial wavenumber k∗, there exists a traveling-wave solution u(x, t) = uwt(k∗x−ω∗t)159

of (3.1), where uwt(ξ) is a non-constant 2π-periodic function. The linearization of160

(3.1) about this wave train is given by ũt = Dũxx+fu(uwt(k∗x−ω∗t))ũ. Substituting161

the Floquet ansatz ũ(x, t) = eλt+νxu(k∗x − ω∗t) into the linearization and using the162

notation ϕ = k∗x− ω∗t, we obtain the spatial eigenvalue problem163

(3.2)

ν

(
u
v

)
= Awt(λ)

(
u
v

)
, Awt(λ) :=

(
−k∗∂ϕ 1

−D−1(ω∗∂ϕ + fu(uwt(ϕ))− λ) −k∗∂ϕ

)
.164

We consider Awt(λ) as a closed operator on H
1
2 (S1,CN )× L2(S1,CN ) with domain165

H
3
2 (S1,CN ) × H1(S1,CN ), where S1 := R/2πZ. It was shown in [24, Lemma 2.8]166

that the spectrum spec(Awt(λ)) of Awt(λ) is a countable set {νj(λ)}j∈Z of isolated167

eigenvalues νj(λ) with finite multiplicity which, when ordered by increasing real part,168

satisfy Re νj → ±∞ as j → ±∞. We refer to the eigenvalues of Awt(λ) as the spatial169

eigenvalues. We can now formulate our hypotheses on the asymptotic wave trains.170

Definition 3.1 (Admissible wave trains). We say that a solution u(x, t) =171

uwt(k∗x−ω∗t) of (3.1) is an admissible wave train if uwt(ϕ) is smooth and 2π-periodic,172

the constants k∗, ω∗ ̸= 0 are nonzero, and the associated operator Awt(λ) defined in173

(3.2) satisfies the following:174

(i) ν = 0 is a simple eigenvalue of Awt(0) with eigenfunction (u′wt, k∗u
′′
wt).175

(ii) The simple eigenvalue ν∗(λ) of Awt(λ) with ν∗(0) = 0, which exists by (i),176

satisfies dν∗
dλ (0) < 0.177

(iii) We have spec(Awt(0)) ∩ iR = {0}.178

(iv) For each λ > 0, we have spec(Awt(λ)) ∩ iR = ∅.179

Definition 3.1(i) implies that admissible wave trains arise in smooth one-parameter180

families that are parametrized by their wavenumber k for k near k∗ with temporal181

frequencies given by a smooth nonlinear dispersion relation ω = ωnl(k). We define182

the group velocity of an admissible wave train by cg := ω′
nl(k∗). We know from [24,183

§2.3] that cg = −[dν∗dλ (0)]−1, and Definition 3.1(ii) therefore implies cg > 0.184

Recall that we order the spatial eigenvalues νj(λ) by increasing real part. We can185

choose the label of one of the spatial eigenvalues and do so by setting ν−1(λ) := ν∗(λ)186

for λ near the origin: Definition 3.1(i) and (iii) show that this choice is unambiguous.187

As discussed in [24, §2.4], this labelling can now be continued consistently, though188

possibly non-uniquely, to each λ ∈ C. Finally, we note that Definition 3.1(iii)-(iv)189

implies that . . . ≤ Re ν−1(λ) < 0 < Re ν0(λ) ≤ . . . for all λ > 0, and the spatial190

eigenvalue ν−1(λ) crosses from left to right through the origin as λ decreases through191

0, while we have Re ν0(0) > 0. The Fredholm boundary ΣFB is the set of λ ∈ C for192

which Awt(λ) is not hyperbolic, and hence defines curves on which ν−1(λ) ∈ iR. From193

This manuscript is for review purposes only.



6 S. DODSON, R. GOH, AND B. SANDSTEDE

now on, we will fix the ordering of the spatial eigenvalues we just introduced. We can194

then define the spatial spectral gap195

J0(λ) := (−Re ν0(λ),−Re ν−1(λ)) ⊂ R, λ ∈ C196

and note that J0(0) = (−Re ν0(0), 0) ⊂ R−. We see in a few moments why the spatial197

spectral gap of wave trains is relevant for spiral waves.198

Definition 3.2 (Absolute spectrum). The set {λ ∈ C : : J0(λ) = ∅}, where199

Re ν0(λ) = Re ν−1(λ), is called the absolute spectrum Σabs of the wave train uwt.200

The absolute spectrum consists of semi-algebraic curves, which generically end at201

branch points or cross in triple junctions [20]. It was shown in [24, Remark 2.4] that202

the absolute spectrum is invariant under the vertical shifts λ 7→ λ+ iω∗ℓ for ℓ ∈ Z.203

Next, we consider the reaction-diffusion system204

(3.3) ut = D∆u+ f(u), x ∈ R2, u ∈ RN205

and note that, while we will often express functions using polar coordinates (r, φ), all206

operators are defined in terms of the Cartesian coordinates x ∈ R2. We now provide207

a formal definition of planar Archimedean spiral waves and list the non-degeneracy208

conditions we need to assume for them.209

Definition 3.3 (Spiral waves). We say that a solution u(r, φ, t) = u∗(r, φ−ω∗t)210

of (3.3) is a spiral wave if ω∗ > 0 and there is a wave train uwt(k∗x − ω∗t) of (3.1)211

with nonzero wavenumber k∗ and a smooth function θ∗(r) with θ′∗(r) → 0 as r → ∞212

such that |u∗(r, · − ω∗t)− uwt(k∗r + θ∗(r) + · − ω∗t)|C1(S1) → 0 as r → ∞.213

We linearize (3.3) in a co-rotating frame around the spiral wave to obtain the214

linear operator215

L∗ = D∆+ ω∗∂φ + fu(u∗(r, φ)),216

which is closed and densely defined on L2(R2,CN ) and whose domain contains the217

intersection of H2(R2,CN ) and {u ∈ L2(R2,CN ) : ∂φu ∈ L2(R2,CN )}; see [24, §3.2]218

for further details. We will also consider the linearization L∗ on the function spaces219

L2
η(R2,CN ) := {u ∈ L2

loc : |u|L2
η
:= |u(x)eη|x||L2 < ∞}. We can now connect the220

spatial spectral gap J0(λ) with properties of the linearization L∗: as shown in [24,221

§3.2], the operator L∗ − λ is Fredholm with index zero when considered on the space222

L2
η(R2,CN ) with weight η ∈ J0(λ). This justifies the following definition of the223

extended point spectrum of a planar spiral wave.224

Definition 3.4 (Extended point spectrum of spiral waves). We say that λ ∈225

C \ Σabs is in the extended point spectrum Σsp
ext of L∗ if the kernel of L∗ − λ is226

nontrivial in L2
η(R2,CN ) for some η ∈ J0(λ).227

Since J0(0) = (−Re ν0(0), 0) ⊂ R− is not empty and L∗∂φu∗ = 0, we see that228

λ = 0 lies in the extended point spectrum of the spiral wave. We will focus on229

transverse spiral waves which satisfy the following conditions.230

Definition 3.5 (Transverse spiral waves). We say that a spiral wave u∗(r, φ) is231

transverse if (i) its asymptotic wave train is admissible (see Definition 3.1) and (ii)232

for all η < 0 sufficiently small the eigenvalue λ = 0 of the linearization L∗ considered233

as a closed operator on L2
η(R2,CN ) is algebraically simple.234

This definition is slightly broader that the one given in [24], and we emphasize235

that all results in [24] continue to hold for spiral waves that satisfy Definition 3.5.236
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Our next definition focuses on boundary sinks, which connect an admissible wave237

train at x = −∞ with a boundary condition at x = 0. Given an admissible wave train238

with frequency ω∗ > 0, we seek solutions u(x, τ) = ubs(x, τ) of the system239

ω∗uτ = Duxx + f(u), (x, τ) ∈ R− × S1(3.4)240

0 = au(0, τ) + bux(0, τ), τ ∈ S1
241

with 2π-periodic boundary conditions in τ , where a, b ∈ R with a2 + b2 = 1. For a242

solution ubs(x, τ) of (3.4), we also consider the associated Floquet linearization243

ω∗uτ = Duxx + fu(ubs(x, τ))u+ λu, (x, τ) ∈ R− × S1(3.5)244

0 = au(0, τ) + bux(0, τ), τ ∈ S1
245

on the space L2
η(R−,CN ) with norm |u|L2

η
:= |u(x)eηx|L2 . We will consider non-246

degenerate boundary sinks that satisfy the following conditions.247

Definition 3.6 (Non-degenerate boundary sinks). A solution u(x, τ) = ubs(x, τ)248

of (3.4) is called a non-degenerate boundary sink if (i) there is an admissible wave-249

train solution uwt(k∗x − ω∗t) of (3.1) so that |ubs(x, ·) − uwt(k∗x − ·)|C1(S1) → 0 as250

x → −∞ and (ii) the only solution u(x, τ) of the linearization (3.5) with λ = 0 that251

satisfies u(x, 0) ∈ L2
η(R−,CN ) for each η ∈ J0(0) is u = 0.252

We define the extended point spectrum of boundary sinks.253

Definition 3.7 (Extended point spectrum of boundary sinks). We say that λ ∈254

C \ Σabs is in the extended point spectrum Σbs
ext of a non-degenerate boundary sink255

ubs(x, τ) if (3.5) has a nontrivial solution u(x, τ) with u(x, 0) ∈ L2
η(R−,CN ) for some256

η ∈ J0(λ).257

It was shown in [24, Theorem 3.19] that, given numbers a, b ∈ R with a2+ b2 = 1,258

a transverse spiral wave persists under truncation as a solution uR of the boundary-259

value problem260

0 = D∆u+ ωuφ + f(u) for |x| < R and 0 = au+ b
∂u

∂n
for |x| = R(3.6)261

for all large R ≫ 1 provided (3.4) admits a non-degenerate boundary sink belonging262

to the admissible asymptotic wave train of the planar spiral wave (and we refer to263

§4.2 for a comparison of temporal frequencies and profiles of the planar spiral u∗, the264

boundary sink ubs, and the truncated spiral uR). We now turn to our main results.265

We define266

(3.7) LR := D∆+ ωR∂φ + fu(uR(r, φ))267

in Cartesian coordinates as a densely defined operator on L2(BR(0),CN ) with domain268

D(LR) := {u ∈ H2(BR(0),CN ) :
(
au+ b ∂u∂n

)
||x|=R = 0}. We also set Σ∞ := Σabs ∪269

Σsp
ext ∪ Σbs

ext and note that it follows from the proof of [24, Theorem 3.26] that the270

spectrum spec(LR) of LR on L2(BR(0)) with domain D(LR) lies in the ϵ-neighborhood271

Uϵ(Σ∞) of Σ∞ inside each compact subset of C for all R≫ 1. In fact, if the extended272

point spectra of the spiral wave and the boundary sink do not intersect, and the273

absolute spectrum satisfies additional simplicity and non-resonance conditions, then274

[24, Theorem 3.26] shows that spec(LR) → Σ∞ in the symmetric Hausdorff distance275

as R→ ∞ uniformly on each fixed compact subset of C. In other words, it is expected276

that infinitely many eigenvalues converge to Σabs as R→ ∞.277
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Analogously to the case of one-dimensional patterns considered in [22], we expect278

that the norm of the resolvent (LR − λ)−1 grows exponentially in R for each λ ∈ C \279

Uϵ(Σ∞) for which L∗−λ has a non-zero Fredholm index (that is, where Re ν−1(λ) > 0280

or Re ν0(λ) < 0). Our first result affirms this expectation.281

Theorem 3.8. Assume that u∗(r, φ) is a transverse spiral wave of (3.3) with282

admissible asymptotic wave train uwt(k∗x−ω∗t) and that ubs(x, τ) is a non-degenerate283

boundary sink of (3.4) belonging to the wave train uwt. For each λ∗ /∈ Σ∞, there are284

constants C∗, R∗, δ∗, η∗ > 0 so that the following is true:285

(i) Assume 0 /∈ J0(λ∗): If Re ν−1(λ∗) > 0 with Re ν−2(λ∗) < Re ν−1(λ∗), or else286

Re ν0(λ∗) < 0 with Re ν0(λ∗) < Re ν1(λ∗), then ∥(LR−λ)−1∥L2(BR(0)) ≥ C∗eη∗R287

uniformly in R ≥ R∗ and λ ∈ Bδ∗(λ∗).288

(ii) If 0 ∈ J0(λ∗), then ∥(LR − λ)−1∥L2(BR(0)) ≤ C∗ uniformly in R ≥ R∗ and289

λ ∈ Bδ∗(λ∗).290

Next, consider LR with domain Y1
η := {u ∈ H2

η (BR(0)) : (au + b ∂u∂n )||x|=R = 0}291

on the space L2
η(BR(0)) where |u|2L2

η(BR(0)) =
∫
|x|≤R |u(x)eη|x||2 dx, then the resolvent292

is bounded uniformly in R on L2
η(BR(0)) for appropriate rates η.293

Theorem 3.9. Assume that u∗(r, φ) is a transverse spiral wave of (3.3) with294

admissible asymptotic wave train uwt(k∗x−ω∗t) and that ubs(x, τ) is a non-degenerate295

boundary sink of (3.4) belonging to the wave train uwt, then there exists a C0-function296

η : C \ Σabs → R with η(λ) ∈ J0(λ) for each λ so that the following is true. For297

each compact subset Ω of C and each ϵ > 0, there are numbers C∗, R∗ > 0 so that298

∥(LR − λ)−1∥L(L2
η(λ)

(BR(0))) ≤ C∗ for all λ ∈ Ω \ Uϵ(Σ∞) and R > R∗, where LR is299

the operator defined in (3.7) posed on L2
η(λ)(BR(0)) with domain Y1

η(λ).300

4. Proof of main results. We prove Theorem 3.9 in §4.1-4.7 and Theorem 3.8301

in §4.8.302

4.1. Spatial dynamics. Recall the operator LR = D∆+ωR∂φ+fu(uR(r, φ)) on303

L2
η(BR(0)) with domain Y1

η , where uR(r, φ) denotes the truncated spiral-wave solution304

of (3.6) for ω = ωR, whose existence is guaranteed by our assumptions. Choose a305

compact subset Ω ⊂ C and a constant ϵ with 0 < ϵ≪ 1, and define the compact set306

(4.1) Λϵ := Ω \ Uϵ(Σ∞).307

Pick a continuous function η : Λϵ → R with η(λ) ∈ J0(λ) for all λ ∈ Λϵ. In this308

setting, we want to find constants C∗, R∗ > 0 so that for each R ≥ R∗, λ ∈ Λϵ, and309

h ∈ L2
η(λ)(BR(0)) the equation (LR − λ)w = h has a unique solution w ∈ Y1

η(λ) and310

we have |w|L2
η(λ)

≤ C∗|h|L2
η(λ)

. We will reformulate this problem as follows. Given311

any η ∈ J0(λ) and h ∈ L2
η, we write g = eη|x|h so that g ∈ L2 with |g|L2 = |h|L2

η
.312

Writing u = eη|x|w, we see that the problem described above is equivalent to finding313

constants C∗, R∗ so that314

(4.2) (eη|x|LRe−η|x| − λ)u = g315

has a unique solution u ∈ X 1
η := {u ∈ H2(BR(0)) : ((a− bη)u+ bur) ||x|=R = 0} with316

|u|L2 ≤ C∗|g|L2 for each R ≥ R∗. Our strategy for proving this claim for (4.2) is to317

write this equation in polar coordinates as the first-order differential equation318 (
ur
vr

)
=

(
η 1

−∂φφ

r2 −D−1[ωR∂φ + f ′(uR)− λ] η − 1
r

)(
u
v

)
+

(
0

D−1g(r, φ)

)
(4.3)319
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in the spatial evolution variable r ∈ (0, R), where (u, v)(r, ·) lies for each fixed r in the320

Banach space X := H1(S1,CN )× L2(S1,CN ). The boundary conditions for u ∈ X 1
η321

at |x| = R translate into the η-independent boundary conditions322

(u, v)(R, ·) ∈ Ebc := {(u, v) ∈ X : au+ bv = 0}323

for solutions (u, v)(r, ·) of (4.3) at r = R. We will now discuss (4.3) in different regions324

of BR(0). We will rely heavily on the results established in [24] to which we refer for325

details and proofs of the facts we quote below.326

4.2. Archimedean coordinates. In [24], the planar and truncated spiral waves327

were constructed as smooth profiles in Archimedean coordinates. As in [24], we there-328

fore define ua∗(r, ϑ) := u∗(r, ϑ− k∗r − θ∗(r)), uaR(r, ϑ) := uR(r, ϑ− kRr − θR(r)), and329

uabs(ρ, ϑ) := ubs(ρ, k∗ρ − ϑ) to denote the truncated spiral wave, the planar spiral330

wave, and the boundary sink in Archimedean coordinates, where kR and θR(r) are331

the wave number and phase correction functions associated with the truncated spiral332

wave. It was shown in [24, Theorem 3.19 and §9.2] that333

sup
0≤r≤R−κ−1 logR

|uaR(r, ϑ)− ua∗(r, ϑ)|eκ(R−κ−1 logR−r)(4.4)334

+ sup
−κ−1 logR≤ρ≤0

|uaR(R+ ρ, ϑ)− uabs(ρ, ϑ)| ≤
C

Rγ
335

and |ω∗−ωR|+ |k∗−kR|+sup0≤r≤R r|θ∗(r)−θR(r)| ≤ Ce−γR. Furthermore, we have336

ua∗(r, ·) → uwt(·) as r → ∞ and uabs(ρ, ·) → uwt(·) as ρ→ −∞.337

Below, we will also need the spectral projections of the linearization Awt(λ) de-338

fined in (3.2) on Y := H
1
2 (S1,CN )×L2(S1,CN ). We showed in §3 that spec(Awt(λ))∩339

−η + iR = ∅ for each η ∈ J0(λ). We can therefore define the complementary340

spectral projections P s,u
wt (λ) ∈ L(Y ) of Awt(λ) associated with the spectral sets341

{ν ∈ spec(Awt(λ)) : Re ν < −η} and {ν ∈ spec(Awt(λ)) : Re ν > −η}. Note that342

these projections do not depend on η as long as η lies in J0(λ).343

4.3. Far-field region. We first consider the region r ∈ [R1, R−κ−1 logR] for an344

appropriate R1 > 0 and all R≫ 1. Since the truncated spiral wave uR(r, φ) is close to345

the planar spiral wave u∗(r, φ) in this region by (4.4), we first discuss the linearization346

around the planar spiral wave. Using the Archimedean coordinates ϑ = k∗r+θ∗(r)+φ347

instead of φ in (4.3) and setting g = 0, we arrive at the homogeneous spatial dynamical348

system349

ur = Aη
∗(r, λ)u, u = (u, v)(4.5)350

with351

(4.6) Aη
∗(r, λ) =

(
η − (k∗ + θ′∗(r))∂ϑ 1

−∂ϑϑ

r2 −D−1[ω∗∂ϑ + fu(u
a
∗(r, ϑ))− λ] η − (k∗ + θ′∗(r))∂ϑ − 1

r

)
.352

For each fixed r > 0, the operator Aη
∗(r, λ) is closed on the Banach space X :=353

H1(S1,CN )× L2(S1,CN ) with dense domain X1 := H2(S1,CN )×H1(S1,CN ). We354

equip X with the r-dependent norm |u(r)|2Xr
:= 1

r2 |u|
2
H1 + |u|2

H1/2 + |v|2L2 and write355

Xr whenever the r-dependence of the norm is important. In [24, Lemma 5.4], we356

constructed linear isomorphisms I(r) : Xr → Y with ∥I(r)∥L(Xr,Y ) ≤ C uniformly in357

r ≥ 1 that allowed us to transfer the spectral projections P s,u
wt (λ) defined in §4.2 on358
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10 S. DODSON, R. GOH, AND B. SANDSTEDE

the space Y to the r-dependent projections P s,u
wt (r;λ) := I(r)P s,u

wt (λ)I(r) ∈ L(Xr) on359

Xr. We can now discuss the solvability of the equation360

(4.7) ur = A(r)u, u ∈ Xr,361

where A(r) is of the form (4.6) with (u∗, ω∗) possibly replaced by other profiles and362

temporal frequencies. The key notion is exponential dichotomies:363

Definition 4.1 (Exponential dichotomy). We say that (4.7) has an exponential364

dichotomy with constant K and rate α > 0 on an interval J ⊂ R+ if there are365

linear operators Φs(r, ρ), defined for r ≥ ρ in J , and Φu(r, ρ), defined for r ≤ ρ in366

J , so that the following is true. For all r ≥ ρ in J , we have ∥Φs(r, ρ)∥L(Xρ,Xr) +367

∥Φu(ρ, r)∥L(Xr,Xρ) ≤ Ke−α|r−ρ|. For each u0 ∈ Xρ, the functions u(r) = Φs(r, ρ)u0368

and u(r) = Φu(r, ρ)u0 satisfy (4.7) for r ≥ ρ and r ≤ ρ, respectively, in J . The369

operators P s(r) := Φs(r, r) and P u(r) := Φu(r, r) are complementary projections on370

Xr, which are strongly continuous in r, and we have Rg(Φs(r, ρ)) = Rg(P s(r)) for371

r ≥ ρ in J and Rg(Φu(r, ρ)) = Rg(P u(r)) for r ≤ ρ in J .372

As shown in [19], exponential dichotomies persist under small perturbations.373

Lemma 4.2 (Robustness). Assume that (4.7) has an exponential dichotomy with374

constant K and rate α > 0 on the interval J ⊂ R+. For each δ0 > 0 and α0 ∈ (0, α),375

there are constants K0, δ1 > 0 so that the perturbed system ur = A(r)u+ B(r)u with376

∥B(r)∥L(Xr) ≤ δ1 for r ∈ J has an exponential dichotomy on J with constant K0377

and rate α0, and the associated projections are δ0-close to the projections for (4.7)378

uniformly in r ∈ J .379

It was shown in [24, §5.2 and §5.5] that for each λ ∈ Λϵ and η ∈ J0(λ) there is an380

R1 > 0 so that (4.5) has an exponential dichotomy with constant K and rate α > 0381

on [R1,∞), and we denote the associated projections by P s,u
∗ (r;λ, η). It follows from382

[24, Proposition 5.5] that ∥P s
wt(r;λ)− P s

∗(r;λ, η)∥L(Xr) → 0 as r → ∞. Any positive383

number α that satisfies η ± α ∈ J0(λ) can be chosen as the rate of the exponential384

dichotomy. Next, we consider the homogeneous system385

ur = Aη
R(r, λ)u(4.8)386

associated with the truncated spiral wave uR on Xr, where387

(4.9) Aη
R(r, λ) =

(
η − (kR + θ′R(r))∂ϑ 1

−∂ϑϑ

r2 −D−1[ωR∂ϑ + fu(u
a
R(r))− λ] η − (kR + θ′R(r))∂ϑ − 1

r

)
.388

The estimate (4.4) shows that uaR is 1/Rγ-close to the planar spiral wave ua∗ in the389

region we consider here, and we conclude that for each λ ∈ Λϵ and η ∈ J0(λ) there390

are constants δ, C > 0 so that391

supr∈[R1,R−κ−1 logR]

∥∥∥Aη
∗(r, λ)−Aη̃

R(r, λ̃)
∥∥∥
L(Xr)

≤ C
(

1
Rγ + |λ− λ̃|+ |η − η̃|

)
392

uniformly in R for all λ ∈ Uδ(λ) and η ∈ Uδ(η), where γ has been defined in (4.4).393

Extending Aη
R(r, λ) from [R1, R− κ−1 logR] to [R1,∞) by freezing its coefficients at394

their value at r = R− κ−1 logR and applying Lemma 4.2 gives the following result.395

Lemma 4.3 (Far-field dichotomies). For each δ0 > 0, λ0 ∈ Λϵ, and η0 ∈ J0(λ0)396

there exist positive constants α, δ,K,R1, R2 so that the following is true. Equation397

(4.8) has an exponential dichotomy with constant K and rate α on J = [R1, R −398

κ−1 logR] uniformly in λ ∈ Uδ(λ0), η ∈ Uδ(η0), and R ≥ R2, and the associated399

projections P s
R(r;λ, η) satisfy supr∈[R1,R−κ−1 logR] ∥P s

R(r;λ, η)−P s
∗(r;λ0, η0)∥Xr

≤ δ0.400
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4.4. Boundary-layer region. We consider the region r ∈ [R − κ−1 logR,R].401

To facilitate comparison with the boundary sink, we use the independent variable402

ρ = r − R instead of r. The linearization about the boundary sink uabs(ρ, ϑ) in403

Archimedean coordinates is given by404

uρ = ηu− k∗∂ϑu+ v, vρ = ηv − k∗∂ϑv − v
ρ+R −D−1[ωR∂ϑ + fu(u

a
bs(ρ, ϑ))− λ]u405

with ρ ∈ R−. We know from [24, Lemma 9.1] that this equation has an exponential406

dichotomy on R− and that the associated projections P s
bs(ρ;λ, η) converge to P

s
wt(λ) as407

ρ→ −∞. Since λ /∈ Σbs
ext and η ∈ J0(λ), we also know that Rg(P u

bs(0;λ, η))⊕Ebc = X,408

and the expressions in [19, (3.20)] show that we can modify the exponential dichotomy409

of the boundary sink on R− so that Rg(P s
bs(0;λ, η)) = Ebc. Next, we reformulate the410

linearization (4.8) around uaR(ρ+R,ϑ) using the coordinate ρ = r −R to arrive at411

uρ =ηu− [kR + θ′R(ρ+R)]∂ϑu+ v(4.10)412

vρ =ηv − [kR + θ′R(ρ+R)]∂ϑv − v
ρ+R − ∂ϑϑu

(ρ+R)2413

−D−1[ωR∂ϑ + fu(u
a
R(ρ+R,ϑ))− λ]u414

with ρ ∈ [−κ−1 logR, 0]. The estimate (4.4) shows that uaR(ρ+R, ·) is 1/Rγ-close to415

the boundary sink uabs(ρ, ·). Using Lemma 4.2 and the results in [24, §5.2 and §9.2]416

for the system (4.10) with coefficients frozen at their values at ρ = −κ−1 logR, we417

have the following result.418

Lemma 4.4 (Boundary-layer dichotomies). Given δ0 > 0, λ0 ∈ Λϵ, and η0 ∈419

J0(λ0) there exist constants α, δ,K,R2 > 0 so that the following is true. Equation420

(4.10) has an exponential dichotomy with constant K and rate α on [−κ−1 logR, 0]421

uniformly in λ ∈ Uδ(λ0), η ∈ Uδ(η0), and R ≥ R2, and the associated projec-422

tions P̃ s
R(ρ;λ, η) satisfy Rg(P̃ s

R(0;λ, η)) = Ebc and supρ∈[−κ−1 logR,0] ∥P̃ s
R(ρ;λ, η) −423

P s
bs(ρ;λ0, η0)∥Xr ≤ δ0.424

4.5. Matching far-field and boundary-layer regions. First, we combine425

the results we obtained in §4.3 and §4.4 to conclude the existence of exponential426

dichotomies of the linearization427

ur = Aη
R(r, λ)u(4.11)428

associated with the truncated spiral wave uR on the interval [R1, R] for all R ≫ 1,429

where Aη
R(r, λ) has been defined in (4.9). Choose Λϵ as in (4.1) and pick continuous430

functions η±(λ) so that [η−(λ), η+(λ)] ∈ J0(λ) for all λ ∈ Λϵ. We then define the431

compact set Cϵ := {(λ, η) : λ ∈ Λϵ, η ∈ [η−(λ), η+(λ)]}.432

Proposition 4.5. Assume that the assumptions of Theorem 3.9 are met and433

choose Cϵ as above. For each δ0 > 0, there exist positive constants α,K,R1, R2 so434

that the following is true. Equation (4.11) has an exponential dichotomy Φs,u
R (r, ρ;λ, η)435

with constant K and rate α on J = [R1, R] uniformly in (λ, η) ∈ Cϵ and R ≥ R2, and436

the associated projections P s,u
R (r;λ, η) satisfy Rg(P s

R(R;λ, η)) = Ebc and437

sup
r∈[R1,R−κ−1 logR]

∥P s
R(r;λ, η)− P s

∗(r;λ, η)∥Xr438

+ sup
r∈[R−κ−1 logR,R]

∥P s
R(r;λ, η)− P s

bs(r −R;λ, η)∥Xr ≤ δ0.439
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Proof. We proved the existence of exponential dichotomies for (4.11) in Lem-440

mas 4.3 and 4.4 separately on [R1, R − κ−1 logR] and [R − κ−1 logR,R]. Since the441

associated projections evaluated at r = R − κ−1 logR are arbitrarily close to the442

spectral projections of the wave-train projections, we can use [19, (3.20)] to redefine443

the projections and exponential dichotomies of (4.11) so that they are continuous at444

r = R − κ−1 logR and therefore give dichotomies on [R1, R]. This process does not445

change the rate α and replaces the constant K by K(1 + 2K)2. Next, the results in446

Lemmas 4.3 and 4.4, and therefore the extension we just discussed, are locally uni-447

form, and we can use compactness of Cϵ to prove that, given δ0 > 0, the radii R1, R2,448

the constant K, and the rate α can be chosen uniformly in (λ, η) ∈ Cϵ.449

Next, given g ∈ L2(BR(0)), we need to solve (4.3) and establish uniform es-450

timates for the solution. We switch to Archimedean coordinates, define g(r) :=451

(0, D−1g(r, ·))∗, and rewrite (4.3) as ur = Aη
R(r, λ)u + g(r). Using [24, §6.2] and452

Proposition 4.5, we see that the function453

u+(r) = Φs
R(r,R1;λ, η)a

s
+ +Φu

R(r,R;λ, η)a
u
+ +

∫ r

R1

Φs
R(r, ρ;λ, η)g(ρ) dρ(4.12)454

+

∫ r

R

Φu
R(r, ρ;λ, η)g(ρ) dρ455

is a solution with456

(4.13) supr∈[R1,R] |u+(r)|Xr
≤ K

(
|as+|XR1

+ |au+|XR
+ 2

α |g|L2(BR(0))

)
457

for arbitrary as+ ∈ Rg(P s
R(R1;λ, η)) and au+ ∈ Rg(P u

R(R;λ, η)).458

4.6. Core region. It remains to analyse the region r ∈ [0, R1] with R1 as in459

Proposition 4.5. This region was investigated in [24, §5.1, §5.3, and §5.5], and we460

therefore only summarize the results proved there. The equation ur = Aη
R(r, λ)u +461

g(r) has exponential dichotomies P̂ s,u
R (r;λ, η) on [0, R1] and has for each bu

− ∈462

Rg(P̂ u
R(R1;λ, η)) a unique bounded solution u−(r) with463

sup
r∈[0,R1]

|u−(r)|X ≤ K1

(
|bu

−|XR1
+ 2|g|L2(BR(0))

)
(4.14)464

u−(R1) = bu
− +

∫ R1

0
Φ̂s
R(R1, ρ;λ, η)g(ρ) dρ(4.15)465

uniformly in (λ, η). This completes the analysis of (4.3) for r ∈ [0, R1].466

4.7. Uniform resolvent estimates. Equations (4.12) and (4.15) provide solu-467

tions u+(r) and u−(r) of ur = Aη
R(r, λ)u + g(r) on [R1, R] and [0, R1], respectively.468

It remains to solve the matching conditions u+(R1) = u−(R1) and the boundary469

conditions u+(R) ∈ Ebc, which are given by470

0 = as+ +Φu
R(R1, R;λ, η)a

u
+ +

∫ R1

R

Φu
R(R1, ρ;λ, η)g(ρ) dρ(4.16)471

−bu
− −

∫ R1

0

Φ̂s
R(R1, ρ;λ, η)g(ρ) dρ472

u+(R) = au+ +Φs
R(R,R1;λ, η)a

s
+ +

∫ R

R1

Φs
R(R, ρ;λ, η)g(ρ) dρ ∈ Ebc.(4.17)473

Since λ /∈ Σsp
ext, it follows from [24, Proposition 6.1 and §5.5] that the map474

ι(λ, η) : Rg(P s
R(R1;λ, η))× Rg(P̂ u

R(R1;λ, η)) −→ XR1
, (as+,b

u
−) 7−→ as+ − bu

−475
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is invertible with inverse that is bounded uniformly in (λ, η). Furthermore, we know476

from Proposition 4.5 that Rg(P u
R(R;λ, η))⊕ Ebc = XR, and we also have477

|Φu
R(R1, R;λ, η)a

u
+|XR1

+ |Φs
R(R,R1;λ, η)a

s
+|XR

≤ Ke−α(R−R1)
(
|au+|XR1

+ |as+|XR

)
478

Thus, we can solve (4.16)-(4.17) uniquely for (as+,a
u
+,b

u
−) as a linear function of g479

with bound480

|as+|XR1
+ |au+|XR

+ |bu
−|XR1

≤ C0|g|L2(BR(0)),481

where C0 = C0(K,K1, α) does not depend on R or on (λ, η) ∈ Cϵ. Substituting these482

bounds into the estimates (4.14) and (4.13) shows that the first component u(r, φ)483

of u(r) satisfies |u|L2(BR(0)) ≤ C1|g|L2(BR(0)), where C1 does not depend on R or on484

(λ, η) ∈ Cϵ. Finally, the arguments in [24, §6.2] show that u ∈ H2(BR(0)). This485

completes the proof of Theorem 3.9.486

4.8. Proof of Theorem 3.8. Theorem 3.8(ii) follows directly from Theorem 3.9487

since we can apply this theorem with η = 0 which lies in J0(λ∗) by assumption. It488

therefore remains to prove statement (i), which claims that ∥(LR − λ)−1∥ grows ex-489

ponentially in R. Since we assume that 0 /∈ J0(λ∗) = [−Re ν0(λ∗),−Re ν−1(λ∗)], we490

have either Re ν−1(λ∗) > 0 or else Re ν0(λ∗) < 0. We focus on the case Re ν−1(λ∗) >491

0 and will comment later on the second case, which can be tackled analogously.492

Throughout the proof, we will fix λ∗ and η∗ ∈ J0(λ∗) so that η∗ < 0 and omit493

the superscripts and the dependence on (λ, η) in the remainder of this section, since494

variations in (λ, η) can be included as in the previous sections.495

We denote by u−1 = (u−1, v−1) the eigenvector of Aη
wt := Awt + η1 belonging to496

the simple eigenvalue ν̃−1 := ν−1+η and by uad
−1 the corresponding eigenvector of the497

adjoint operator. It follows from [24, §4.3] that v−1 ̸= 0. For later use, we also define498

P c
wtv := ⟨uad

−1,v⟩u−1. Our strategy for establishing Theorem 3.8 is to prove that the499

norm |w|L2(BR(0)) of the solution w of500

(4.18) (LR − λ)w = h, h(r, φ) := χ[R2,R2−d](r)v−1(φ)501

grows exponentially in R, where χI(r) denotes the indicator function of the interval502

I ⊂ R and R2, d are R-independent constants that we will choose later. We will rely503

on the results in §4.3 for the linear system (4.8)504

ur = Aη
R(r, λ)u(4.19)505

associated with the truncated spiral wave uR, posed on the exponentially weighted506

spaces and extended to [R1,∞) by freezing its coefficients at their value for r =507

R − κ−1 logR. Lemma 4.3 shows that (4.19) has exponential dichotomies Φs,u
R (r, s)508

with constant K and rate α > 0 on [R1,∞) and that the associated projections P s
R(r)509

satisfy510

sup
r∈[R1,R−κ−1 logR]

∥P s
R(r)− P s

∗(r)∥Xr
≤ C

Rγ
.511

Our first result provides asymptotic expansions of bounded solutions to (4.19). Recall512

that we assumed that Re ν−2(λ) < Re ν−1(λ).513

Lemma 4.6. There are positive constants a0, β, C0 > 0, constants b0 ∈ R and514

R0 ≥ R1, a real-valued function a(r, s), and a projection P c
R(r) so that ∥P c

R(r)−P c
wt∥ ≤515

C0(
1
r +

1
Rγ ), |a(r, s)| ≤ a0 for all r ≥ s, and516

(4.20)

∣∣∣∣Φs
R(r, s)v0 −

(r
s

)b0
eν̃−1(r−s)ea(r,s)P c

R(s)v0

∣∣∣∣
Xr

≤ C0e
(ν̃−1−β)(r−s)|v0|Xs517
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uniformly in R0 ≤ s ≤ r ≤ R− 3κ−1 logR for each v0 ∈ Xs.518

Proof. It was shown in [24, Equation (8.7), Proposition 10.4, and Step 4 in §11.3]519

that solutions v(r) of (4.19) in the center-stable directions can be written in the520

form v(r) = vc(r) + Φss
R(r, s)v(s), where ∥Φss

R(r, s)∥ ≤ C0e
(ν̃−1−β)(r−s) for each fixed521

β ∈ (0,Re ν−1 − Re ν−2), and vc(r) = P c
R(r)v(r) satisfies the scalar linear ODE522

vc
r =

[
ν̃−1 +

b0
r

+O

(
1

r2
+ e−κ(R−κ−1 logR−r)

)]
vc.523

Integrating this equation gives the expression (4.20), where a(r, s) is given by524 ∫ r

s

O

(
1

ρ2
+ e−κ(R−κ−1 logR−ρ)

)
dρ ≤ C0

(
1

R0
+

1

R

)
525

for R0 ≤ s ≤ r ≤ R− 3κ−1 logR. This completes the proof of the lemma.526

Next, consider (4.18) written in exponentially weighted spaces as527

(4.21) ur = Aη
R(r, λ)u+ g(r), g(r) =

(
0

D−1g(r, ·)

)
, g(r, ·) := eηrh(r, ·).528

Note that w(r) := e−ηrP1u(r) is then the solution of (4.18) and that we have529

|g|L2(BR(0)) = eηR2

√
(1− 2ηR2)(e−2ηd − 1)

2η
|v−1|L2(S1).530

In §4.7, we constructed solutions of (4.21) via a variation-of-constants formula on531

[R1, R] after combining the exponential dichotomies we had previously constructed532

separately in the far field [R1, R − κ−1 logR] and the boundary-layer region [R −533

κ−1 logR,R]. Here, we will instead use the far-field dichotomies on [R1, R−κ−1 logR]534

and introduce a second matching step at r = R − κ−1 logR with the solution in the535

boundary-layer region. Proceeding in the same way as in §4.7, we find that the536

solution u(r) of (4.21) is of the form537

u(r) = Φs
R(r,R1)a

s +Φu
R(r,R− κ−1 logR)au +

∫ r

R1

Φs
R(r, ρ)g(ρ) dρ538

+

∫ r

R−κ−1 logR

Φu
R(r, ρ)g(ρ) dρ539

for r ∈ [R1, R − κ−1 logR], where as and au arise from the matching conditions and540

satisfy541

(4.22) |as|XR1
+ |au|XR−κ−1 log R

≤ C0|g|L2(BR(0)) ≤ C0e
ηR2
√
R2d|v−1|L2(S1).542

Since the stable projections P s
R(r) are uniformly close to the wave-train projections543

for r ≥ R1, we conclude that there is a constant c0 > 0 so that544

(4.23) |u(r)|Xr ≥ c0

∣∣∣∣Φs
R(r,R1)a

s +

∫ r

R1

Φs
R(r, ρ)g(ρ) dρ

∣∣∣∣
Xr

545

uniformly in r ≥ R1.546

This manuscript is for review purposes only.



NUMERICAL COMPUTATION OF SPIRAL SPECTRA 15

Lemma 4.7. Choose ϵ so that 0 < ϵ < min{β, ν−1}, then there are constants547

c1, d > 0 and R3 ≥ R2 ≥ R1 so that the solution of (4.21) satisfies |u(r)|Xr
≥548

c1e
(ν̃−1−ϵ)r uniformly in r ∈ [R3, R− 3κ−1 logR].549

Proof. We focus on (4.23) and define g0 := (0, D−1v−1). For r ≥ R2, equation550

(4.21) and regularity of g0 show that551 ∫ r

R1

Φs
R(r, ρ)g(ρ) dρ = Φs

R(r,R2)

∫ R2

R2−d
Φs
R(R2, ρ)e

ηρg0 dρ552

= Φs
R(r,R2)g0d(1 + O(d))eηR2 ,553

where the O(d) term is bounded uniformly in R2. Hence, for r ≥ R2, we have554

Φs
R(r,R1)a

s +

∫ r

R1

Φs
R(r, ρ)g(ρ) dρ = Φs

R(r,R2)
[
g0d(1 + O(d))eηR2 +Φs

R(R2, R1)a
s
]

555

=: eηR2Φs
R(r,R2)g1556

and (4.22) shows that557

|g1 − g0d| ≤ C1

(
d2 +

√
R2

d
e−α(R2−R1)

)
|g0|,558

where C1 does not depend on R2 and d. Using Lemma 4.6, we conclude that559

(4.24)∣∣∣∣∣Φs
R(r,R2)g1 −

(
r

R2

)b0
eν̃−1(r−R2)ea(r,R2)P c

R(R2)g1

∣∣∣∣∣
Xr

≤ C0e
(ν̃−1−β)(r−R2)|g1|XR2

.560

Note that [24, §4.3] and algebraic simplicity of the spatial eigenvalue ν−1 imply that561

|P c
R(R2)g0|XR2

≥ |P c
wtg0|XR2

− C0

R2
|g0|XR2

≥ 1− C0|D−1|
R2

≥ 1

2
562

for all sufficiently large R2. Hence, we see that563

|P c
R(R2)g1|XR2

≥ |P c
R(R2)dg0|XR2

− |P c
R(R2)(g1 − dg0)|XR2

564

≥ d

2
− C1

(
d2 +

√
R2

d
e−α(R2−R1)

)
|D−1||v−1|L2S1 ≥ d

4
565

after first choosing d small enough and then R2 large enough. Using these estimates566

together with (4.24), we see that (4.23) becomes567

|u(r)|Xr
≥ c0

∣∣∣∣Φs
R(r,R1)a

s +

∫ r

R1

Φs
R(r, ρ)g(ρ) dρ

∣∣∣∣
Xr

= c0e
ηR2 |Φs

R(r,R2)g1|Xr
568

≥ c0d

4
eηR2

(
r

R2

)b0
eν̃−1(r−R2)ea(r,R2) − c0C0|d|eηR2e(ν̃−1−β)(r−R2).569

Choose ϵ > 0 so small that ϵ < β and ν−1 − ϵ > 0. Since c0, d > 0 and |a(r,R2)| ≤ a0570

uniformly in r, we see that there are constants c1 = c1(R2, d) > 0 and R3 ≥ R2 so571

that |u(r)|Xr
≥ c1e

(ν̃−1−ϵ)r uniformly in r ∈ [R3, R − 3κ−1 logR], which completes572

the proof of the lemma.573
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Finally, v(r) = e−ηru(r) is the corresponding solution in the unweighted space.574

We have |v(r)|Xr
= e−ηr|u(r)|Xr

≥ c1e
(ν̃−1−η−ϵ)r = c1e

(ν−1−ϵ)r and by construction575

we have ν−1− ϵ > 0, which guarantees exponential growth of v(r) in r on the interval576

[R3, R− 3κ−1 logR] and therefore for its first component w(r) which satisfies (4.18).577

This completes the proof of Theorem 3.8 for the case Re ν−1(λ) > 0. The case578

where Re ν0(λ) < 0 can be treated similarly by focusing on the unstable directions in579

backward time, instead of the stable directions in forward time. We omit the details580

as they are similar to the case studied above.581

5. Algorithm and numerical validation. The resolvent bounds of Theo-582

rem 3.9 provide the basis for a numerical algorithm to accurately and efficiently com-583

pute the eigenvalues of a spiral wave posed on a bounded domain. In this section, we584

first describe the algorithmic framework and then apply it to the Barkley model.585

5.1. Exponential weights as preconditioners. We seek to numerically ap-586

proximate the spectra of the operator LR posted on the bounded disk BR(0). For the587

numerical computations, the Laplacian is defined in polar coordinates (r, ψ) and the588

relevant operator is LRv = D∆r,ψv+ω∂ψv+ fu (u∗(r, ψ))v, which acts on functions589

in {v ∈ H2(BR(0)) : vr(R, ·) = 0}.590

Posing the operator LR in the exponentially weighted space L2
η(BR(0)) is equiv-591

alent to seeking eigenfunctions of the form v(r, ψ) = e−ηrw(r, ψ). Thus, we instead592

consider the linear operator LηRw := eηrLηRe−ηrw = LRw+D[η2− η
r −2η∂r]w on the593

space {w ∈ H2(BR(0)) : wr(R, ·) = ηw(R, ·)}. Note that the operator LηR becomes594

LR for η = 0. Based on Theorem 3.9, we choose the exponential weight η(λ) in the595

interval J0(λ), which is determined by the spectrum of Awt(λ).596

We note that Theorem 3.8(ii) provides uniform bounds on the resolvent for each597

λ ∈ C for which 0 ∈ J0(λ), that is, informally, for all λ to the right of ΣFB in the598

unweighted space. Hence, iterative eigenvalue solvers should work as expected to599

identify eigenvalues in these regions. Thus, the use of the weighted operator LηR is600

particularly useful for λ ∈ C for which 0 /∈ J0(λ).601

Numerical methods. Computing the spectra of spiral waves involves first solv-602

ing for the spiral-wave patterns and subsequently computing the eigenvalues of the603

linearized operator. The spiral wave u∗(r, ψ) and far-field periodic wave-train solu-604

tions are computed numerically via root-finding methods following established meth-605

ods: we review these methods briefly and refer to [27, 9] for additional details. All606

computations are done in MATLAB, and the code is available on GitHub [8]. Pe-607

riodic wave trains are computed on a one-dimensional 2π-periodic domain using a608

pseudospectral method with 128 grid points. For the spiral-wave computations, the609

bounded disk domain becomes a rectangle in polar coordinates, which we discretize610

with Nr radial grid points and Nθ angular grid points. Derivatives are approximated611

using fourth-order centered finite differences in the radial direction and Fourier dif-612

ferentiation matrices in the angular coordinate. The radial grid spacing is fixed at613

hr = 0.05 with Nr = R/hr + 1 radial grid points.614

For the eigenvalue computations, the linear operator LηR is formed using differen-615

tiation matrices on a grid with a single grid point at the origin. At the origin, ∂rw = 0616

and the Laplacian is computed with a five-point stencil. Boundary conditions applied617

on the outer radius are enforced using second-order centered finite-difference schemes618

coupled with the ghost point method. Numerically approximating eigenvalues of LηR619

is equivalent to finding the eigenvalues of a sparse square matrix with dimension620

[Nθ(Nr − 1) + 1] for each component of the equation. Unless stated otherwise, the621

400 eigenvalues with the smallest absolute value are computed using the sparse eigen-622
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Fig. 3. (a) Inaccurate computation of point spectra of LR. Eigenvalues of spiral waves show
divergence from Σabs for increasing R rather than the expected convergence. The spiral profiles
capture the u-component of the Barkley model. (b)&(c) Eigenvalues approach the anticipated limit
points upon appropriate selection of the exponential weight.

value solver eigs with the ‘smallestabs’ option.623

The absolute spectrum and Fredholm boundaries are computed using the asymp-624

totic periodic wave trains via the continuation algorithms described in [20]. The625

ϵ-pseudospectrum of LηR is found via the minimum singular value of the shifted op-626

erator LηR − λ for a grid of λ ∈ C. Singular values were computed with the svds627

function. Condition numbers of the same shifted operator LηR − λ are computed us-628

ing the condest function. Spatial eigenvalues ν(λ) are approximated numerically by629

computing eigenvalues of the operator Awt(λ) defined in (3.2), where derivatives were630

approximated via a Fourier spectral method with 128 grid points.631

5.2. Application: Barkley model. The paradigm model632

ut = ∆u+ 1
ϵu(1− u)

(
u− v+b

a

)
, vt = δ∆v + u− v633

exhibits bifurcations caused by destabilizing spiral-wave spectra [3].634

Figures 3a-4 demonstrate that spectral computations for the operator LR on the635

unweighted space yield inaccurate results. As the domain radius increases, eigenvalues636

in Figure 3a move away from the theoretical absolute-spectrum limit and instead637

approach curves that resemble the Fredholm boundaries. These inaccurate eigenvalue638

results arise due to the exponential growth of the resolvent in R over large regions of639

the complex plane to the left of ΣFB, and iterative eigenvalue solvers such as eigs640
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Fig. 4. Comparison of ϵ-pseudospectra and eigenvalues of the operator LR (top row) and Lη
R

(bottom row) for η = −1.5. The three columns correspond, from left to right, to disks of radius
R = 25, 50, 75. Red curves show Σabs.
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Fig. 5. Leading spatial eigenvalues νj(λ) shown in (b) as λ moves along the path indicated by
the horizontal dashed arrow in (a). Green and red markers in (b) indicate νj(λ) for λ = 0.1 + 0.5i
(green) and λ = −1+0.5i (red). Spatial eigenvalues ν−1(λ) and ν0(λ) relevant for J0(λ) are labeled.

will identify many spurious eigenvalues in these regions. This fact is demonstrated in641

the top row of Figure 4, where we observe that the computed eigenvalues align along642

ϵ-pseudospectrum contours that gradually approach ΣFB as R increases.643

Next, consider the operator LηR in exponentially weighted spaces. The bottom644

row of Figure 4 contains the ϵ-pseudospectra contours and the computed eigenvalues645

of the operator LηR for η = −1.5: note that the resolvent is better conditioned and646

eigenvalues are significantly more accurate, and that the only change from the top to647

bottom rows in Figure 4 is the switch from LR to the preconditioned operator LηR.648

The selection of exponential weight η impacts the eigenvalue accuracy, as dis-649

played in Figure 3. As the exponential weight decreases to η = −1.5, more eigenvalues650

of LηR move closer to the theoretical R≫ 1 limit Σabs. The choice of η = −1.5 comes651
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Table 1
Shown are the condition numbers κ and minimum SVD values for the operator Lη

R − λ with
weight η and indicated value of λ. All values are reported on a log10-scale for radius R = 75.

λ = 0 λ = −1 + i λ = −1.5 + i
η κ min svd κ min svd κ min svd

0 16.4360 -6.4086 22.2498 -15.8022 33.5090 -27.0790
-0.5 13.0844 -3.6099 8.2964 -1.9682 18.1444 -11.8621
-1.0 13.5074 -4.2008 7.5628 -1.0418 8.4466 -1.8574
-1.5 12.5221 -3.2554 8.1392 -1.3671 10.4340 -2.3428
-2.0 12.2852 -3.1592 9.5971 -2.5870 22.7333 NaN

" = 0 " = −0.5 " = −1 " = −2" = −1.5

log
!"
4(
ℒ #$ )

Fig. 6. Shown is a color plot of the condition numbers of Lη
R−λ in a log10-scale in the λ-plane

for radius R = 75 and various η.

from considering the spatial eigenvalues νj(λ). Figure 5 displays the spatial eigenval-652

ues νj(λ) as λ moves from λ1 = 0.1 + 0.5i to λ2 = −1 + 0.5i, that is as λ traces out653

the horizontal path indicated by the dashed line between the green (λ1) and red (λ2)654

markers. As λ passes through the ΣFB branch, ν−1(λ) crosses the imaginary axis into655

the positive half-plane. Theorem 3.9 suggests weights η ∈ J0(λ) = (−ν0(λ),−ν−1(λ)).656

Thus, for this particular parameter setting in the Barkley model, an exponential657

weight of η = −1.5 is a good selection for a large range of λ to the left of ΣFB.658

The condition numbers κ and the minimum SVD values of the operator LηR − λ659

of the numerical operator shown in Table 1 and illustrated in Figure 6 demonstrate660

similar improvement with the addition of the exponential weight. The three selected661

values for λ in Table 1 represent points at various distances from Σabs and ΣFB. While662

exponential weights yield only moderate improvements of the condition number for663

λ near the origin (due to the eigenvalue 0 ∈ Σsp
ext), appropriate exponential weights664

improve the condition number by over 25 orders of magnitude for λ near Σabs. Table 1665

and Figure 6 also indicate the reduction in efficiency if the weight value is selected666

outside of J0(λ); weights of η = −2 result in higher condition numbers than η = −1667

for some λ.668
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