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Abstract.
This work studies front formation in the Allen-Cahn equation with a parameter heterogeneity which slowly varies in space. In

particular, we consider a heterogeneity which mediates the local stability of the zero state and subsequent pitchfork bifurcation
to a non-trivial state. For slowly-varying ramps which are either rigidly propagating in time or stationary, we rigorously establish
existence and stability of positive, monotone fronts and give leading order expansions for their interface location. For non-zero
ramp speeds, and sufficiently small ramp slopes, the front location is determined by the local transition between convective and
absolute instability of the base state and leads to an O(1) delay beyond the instantaneous pitchfork location before the system
jumps to a nontrivial state. The slow ramp induces a further delay of the interface controlled by a slow-passage through a fold
of strong- and weak-stable eigenspaces of the associated linearization. We introduce projective coordinates to de-singularize
the dynamics near the trivial state and track relevant invariant manifolds all the way to the fold point. We then use geometric
singular perturbation theory and blow-up techniques to locate the desired intersection of invariant manifolds. For stationary
ramps, the front is governed by the slow passage through the instantaneous pitchfork bifurcation with inner expansion given
by the unique Hastings-McLeod connecting solution of Painlevé’s second equation. We once again use geometric singular
perturbation theory and blow-up to track invariant manifolds into a neighborhood of the non-hyperbolic point where the ramp
passes through zero and to locate intersections.

Key words. Allen-Cahn, invasion front, slow parameter ramp, geometric singular perturbation theory, geometric blow-up,
bifurcation delay
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1. Introduction . The interaction of coherent structures, such as fronts, patterns, and waves, with
spatio-temporal heterogeneity has recently attracted much interest in many scientific domains. Generally, one
is interested in how heterogeneities can nucleate, perturb, and mediate structures formed in a system. One
such process which particularly motivates this work is that of directional quenching. Here, a heterogeneity
travels across a medium, either controlled by the experimenter or another part of the system, rendering a
stable equilibrium state unstable and hence nucleating the formation of a coherent structure in its wake.
The speed and shape of the quenching mechanism then directly controls the structure formed in the wake.
Examples of such mechanisms arise in fluid systems, phase-separative systems, chemical reactions, as well
as biological applications; see [14] or [17] for a recent review.

While the quenching heterogeneity often varies sharply in space, so that that medium is rendered strongly
unstable at the quenching location, heterogeneities which are slowly varying in space are also prevalent in
many applications. To name a few specific examples, we mention wavenumber selection in Rayleigh-Benard
convection with slowly varying Rayleigh constant [29, 39], oscillations in fluid flow past a slowly developing
obstacle [24, 6], stripe orientation in morphogenesis due to gradients in production rates and parameters
[22], and formation of cortex domain boundaries via spatially varying signal gradients [12]. See also [32]
for theory about patterns in slowly varying environments and more applications. A different but related
set of phenomena arise in slowly-varying temporal heterogeneities, where pattern-formation is dynamically
mediated with the slow evolution of some parameter, with examples arising in ecological systems [40], soft-
matter defects [43], and cosmological studies [27, 45]. Here the background medium is slowly rendered
unstable in some fashion leading to a variety of effects, such as the selection of a specific wavenumber
of striped pattern, the pinning of a front interface between two states at a certain location, or also the
suppression of defect formation throughout the resulting coherent structure. See also [28] and references
therein for a recent review of related problems of pattern formation on time-varying domains.

Allen-Cahn model equation. In this work, we wish to rigorously study front solutions in a prototyp-
ical partial differential equation with a slowly-varying directional-quenching mechanism. We study such
fronts in the scalar Allen-Cahn equation as it will serve as an approachable but still relevant setting to
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rigorously characterize the interaction of the front with the slowly varying quench, without dealing with
unnecessary technical complications of more realistic equations. We expect our results to have bearing
on similar interactions in other prototypical pattern forming systems with supercritical nonlinearities such
as the Ginzburg-Landau equation and the Swift-Hohenberg equation, as well as more realistic models for
the phenomena mentioned above. We also remark that the sharp quenched case has been considered in
Allen-Cahn, in both one- and two-spatial dimensions, in the works [35, 34]. Our equation takes the form

ut = uxx + µ(x− ct)u− u3, (x, t) ∈ R× R+,(1.1)

µ(ξ) := − tanh(εξ), 0 < ε� 1.(1.2)

Here, as ε is small, the parameter heterogeneity, or “ramp”, slowly varies from -1 at ξ := x − ct = +∞
to 1 at ξ = −∞, making the equilibrium u = 0 locally stable for ξ := x − ct > 0 and locally unstable for
ξ = x − ct < 0. Further, c is an external control parameter which controls the speed at which the quench
rigidly propagates through the medium. This particular quenching function is chosen as it is the solution of a
simple first-order differential equation (1.4). While this quenching function simplifies the technical analysis,
we expect similar phenomena to occur in a neighborhood of µ = 0 with other slowly varying quenching
terms, such as µ(ξ) = −εξ.

We study the formation of traveling front solutions u(x− ct) which converge to 0 at x→ +∞ and 1 at
x→ −∞. Front solutions of this type satisfy the autonomous travelling wave ordinary differential equation

0 = uξξ + cuξ + µu− u3,(1.3)

0 = µξ + ε(1− µ2), µ(0) = 0.(1.4)

We report on front solutions for quenching speeds c ∈ [0, 2), beginning with the dynamic quench with
c ∈ (0, 2) in Sections 1.1-1.2, and then for the stationary quench c = 0 in Sections 1.3-1.4.

1.1. Fronts formed by a dynamic quench with c ∈ (0, 2): Phenomena and numerics. The
moving fronts created by a dynamic quench with c ∈ (0, 2) may be understood heuristically and numeri-
cally, as follows. Figure 1 depicts front solutions to (1.3)-(1.4) obtained through numerical continuation in
AUTO07p [10] for a range of ε and c values. For O(1) values of c ∈ (0, 2), we observe that, for large negative
ξ, the solution tracks the quasi-stationary, or frozen coefficient, equilibrium value

√
µ(ξ). At some negative

value of ξ, the solution profile quickly jumps down to values close to zero. We will later refer to this location
as the front interface and denote the corresponding µ and ξ-values as µfr and ξfr, respectively; see (1.13).
For O(1) values of c > 0 and for 0 < ε � 1, the central observation is that the front remains close to zero
for an interval of length O(1) in µ, or O(ε−1) in ξ < 0, where µ(ξ) > 0 and the trivial state is unstable.
The leading-order size of this interval may be determined asymptotically, by studying the transition from
absolute to convective instability.

Fig. 1. Results of numerical continuation of the traveling wave of (1.3)-(1.4) using AUTO07p. Left: Solutions u(ξ) for a
range of c-values (values in legend) with ε = 0.0025 fixed. Right: Solutions u against the rescaled variable ξ̃ = εξ for a range
of ε values (values in legend) with c = 1.2 fixed, along with µ( ξ̃ )1/2 for ξ̃ < 0.

Absolute instability and the leading-order front interface. The leading order spatial delay in growth in
the front interface behind the quenching threshold µ = 0 is controlled by the transition between convective
and absolute instability of the trivial state as µ increases towards 1 for decreasing ξ. We note this behavior
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Fig. 2. The front location µfr obtained from numerical simulations and compared to the theoretical prediction µfr,pred.
Left: plot of µfr (blue circles), µc (orange line), and µfr,pred (yellow line) given by the expansion (1.14) from Theorem 1.1 for
a range of c values with ε = 0.0025 fixed. Center: plot of µfr − µc comparing numerics (blue) and theoretical prediction (1.14)
(orange) for c = 1.2. Right: Log-Log plot of µfr − µc against ε (blue), with linear fit (orange) of 10 left-most data points, also
for c = 1.2. The measured slope is 0.650.

was also observed and non-rigorously studied in the work [6]. To understand this in heuristic terms, consider
the PDE (1.1), posed in the co-moving frame ξ = x − ct, with initial condition close to the trivial state
except for a small localized perturbation centered around some ξ > 0. As time increases, the perturbation
will decay and be convected leftward until it reaches ξ < 0 when it will start to weakly grow while still being
convected leftward. Thus, at each fixed small ξ < 0 the perturbation will decay pointwise. This behavior
will continue for more negative ξ until µ is sufficiently large to induce pointwise growth, after which the
front will grow to the non-trivial nonlinear state. This transition in growth type is known as the transition
between convective and absolute instability.

To further understand this, we briefly digress to summarize the concepts of absolute and convective
instability of an equilibrium state. For more detailed discussions see [41]. Consider the homogeneous Allen-
Cahn equation, with µ a fixed constant, linearized around the trivial equilibrium u = 0, and posed in the
co-moving frame with speed c,

vt = vξξ + cvξ + µv =: L(µ, c)v(1.5)

The trivial state is convectively unstable if, for given µ, c > 0, a localized perturbation grows but is convected
into the bulk at ξ = −∞, or in other words, the trivial state is unstable in the L2-norm while locally at
each point small perturbations decay over time. The state is absolutely unstable if localized perturbations
grow both in the L2-norm and pointwise. This transition can be located by studying the associated linear
dispersion relation, obtained by inserting the ansatz eλt+νξ into (1.5),

(1.6) 0 = d(λ, ν, c) := ν2 + cν + µ− λ.

In the case of the Allen-Cahn equation, the transition between different types of instability is then obtained
by finding (µ, c) values for which the branch point (λbr, νbr) of (1.6) is marginally stable. That is, a (λ, ν)-pair
which solves

0 = d(λ, ν, c), 0 = dν(λ, ν, c),

and satisfies Reλbr = 0. Calculation gives

λbr = −c2/4 + µ, νbr = −c/2,

so that the boundary between instabilities is given by the curve

µc := c2/4.

Returning to the inhomogeneous system, and posing the time-dependent equation in the co-moving
frame, one expects perturbations of the trivial state located near ξ = 0 to grow but be convected leftwards
until reaching a ξ value where µ(ξ) ≥ µc. Here, they will also grow pointwise until being saturated at the
level u =

√
µ through the nonlinear term. Thus, we define ξc to be the value such that µ(ξc) = c2/4.

3



Further analyzing the numerical results depicted in Figure 1, we find the slow-variation of the parameter
ramp induces a secondary delay of instability and in the growth of the front, so that the front location, which
we denote as ξfr, is less than ξc and the corresponding µ-value, which we denote as µfr, is larger than µc.
The numerics indicate the µ-delay of the front interface varies like

µfr − µc ∼ ε2/3,

consistent with our theoretical results below. Since µ ≈ −εξ for µ near 0, one would then expect the spatial
delay to go like

ξc − ξfr ∼ ε−1/3,

leaving a large plateau region where the front lies close to the now absolutely unstable trivial state. We
discuss the implications of this delay on the stability of this front in Section 8.1.

For c > 2, the trivial state is absolutely stable for all µ ≤ 1, hence small perturbations of the trivial state
will be convected to negative infinity, and hence no front solution with this speed will exist. In the original
PDE, we expect such perturbations to grow and spread through the domain with asymptotic speed 2. It is
of interest how the slowly varying quench alters the convergence of the front speed to this asymptotic rate.
We briefly discuss this in Section 8.4.

1.2. Main existence result for dynamic fronts c ∈ (0, 2) . As discussed above, we seek traveling
wave solutions to the system of ODEs (1.3)-(1.4) for O(1) values of c ∈ (0, 2). To simplify the setting,
we reverse the spatial direction and consider solutions in ζ := −ξ. We obtain the following traveling wave
equation with asymptotic boundary conditions

0 =uζζ − cuζ + µu− u3,(1.7)

µζ =ε(1− µ2),(1.8)

lim
ζ→−∞

u(ζ) = 0 and lim
ζ→+∞

(u(ζ)− 1) = 0.(1.9)

Note that now µ increases from −1 to 1 as ζ increases. Further, we remark that all figures below depicting
various aspects of the phase-portrait have direction of time governed by ζ. The desired solutions of this
system are heteroclinic orbits between the equilibria (u0, v0, µ−) = (0, 0,−1) and (u+, v+, µ+) = (1, 0, 1) in
the following first-order system:

uζ = v(1.10)

vζ = cv − µu+ u3(1.11)

µζ = ε(1− µ2).(1.12)

These heteroclinic orbits will be found in the intersection of the unstable manifold, W u(0, 0,−1), of the
former equilibrium and the stable manifold, W s(1, 0, 1), of the latter equilibrium. Since both of these are
two-dimensional and lie in a three-dimensional ambient phase space, we expect a one-dimensional intersection
and hence a locally isolated heteroclinic trajectory for each ε small. Our result establishes the existence of
such fronts and locates where their interface, or take off from the origin, is located. As observed in Figure
1, the front has a fast jump from the trivial state up to local value of

√
µ when µ is near µc = c2/4. Hence,

to account for the c- and ε-dependence of the front, we define the µ-location of the front interface as

(1.13) µfr = inf{µ : u >
√
µc/2}.

Since µ is one-to-one, we can then define ζfr so that µ(ζfr) = µfr. Our main result is stated below. See Figure
3 for a schematic of the phase portrait, with insets in blue depicting local phase portraits for the singular
system ε = 0 near the origin.

Theorem 1.1. For any value fixed of c ∈ (0, 2), there exists an ε0 > 0 sufficiently small such that,
for 0 < ε ≤ ε0, system (1.10)-(1.12) has a heteroclinic orbit Γε which lies in the transverse intersection of
Wu(0, 0,−1) and W s(1, 0, 1). Furthermore, Γε is monotone increasing in u, and there exists a small δ̃ > 0
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independent of ε such that Γε is close to (u, v) = (0, 0) for µ ∈ [−1, c
2

4 − δ̃) and Γε is close to (u, v) = (
√
µ, 0)

for µ ∈ ( c
2

4 + δ̃, 1]. The front location is given by

(1.14) µfr =
c2

4
+ Ω0

(
1− c4

16

) 2
3

ε
2
3 +O(ε ln(ε)).

Here, Ω0 is the smallest positive zero of the following combination of Bessel functions of the first kind,
J−1/3(2z3/2/3) + J1/3(2z3/2/3).

This theorem establishes the main result about quenched fronts for all O(1) values of c ∈ (0, 2), showing
that the monotone invasion fronts have interfaces located at µ = c2/4 to leading order, and not at µ = 0, i.e.,
not where the instantaneous pitchfork bifurcation occurs in which u = 0 becomes an unstable solution of the
PDE. We observe that µ = c2/4 is where the unstable node, which is created at µ = 0 in the instantaneous
pitchfork bifurcation, becomes an unstable improper node, on its way to transitioning to being an unstable
spiral. Hence, there is a substantial delay in the loss of stability of the u = 0 in the PDE. The leading-order
term gives an O(1) delay in µ which corresponds to an O(ε−1) delay in ζ. The next order term gives a
further delay, where µ > µc and the system is absolutely unstable, which is O(ε2/3) in µ and thus O(ε−1/3)
in ζ. Moreover, in the proof of the theorem, we use a projectivized coordinate to track smoothly through
µ = 0 and all the way up through µ = c2/4. It turns out that there is a further delay in the loss of stability
(i.e., in µfr) beyond c2/4, which is of O(ε2/3) duration, and this arises due to a slow-passage through a fold
bifurcation in the projectivized system.

μ

v

μ=1μ=-1

μ<μc

μ=μc μ>μc

Fig. 3. Schematic phase portrait for system (1.10)-(1.12) for 0 < ε � 1. Invariant planes {µ = ±1} depicted in grey,
unstable manifold Wu(0, 0,−1) in orange, stable manifold W s(1, 0, 1) in green. Overlayed are µ = constant planes depicted in
blue which are invariant for ε = 0.

We use geometric singular perturbation theory to construct these heteroclinic orbits for each O(1) value
of c ∈ (0, 2) in the singular limit 0 < ε � 1, first constructing the relevant manifolds for ε = 0, where each
plane {µ = constant} is invariant under the flow of (1.10)-(1.12). We use a projective blow-up near the line
{(0, 0, µ) ; µ ∈ [−1, 1]} to track the manifolds W u(0, 0,−1) and W s(1, 0, 1) to a neighborhood of the point
(0, 0, µc) where an intersection can be constructed. We use the projective coordinate z = v/u, in combination
with u to track the evolution of linear subspaces near the origin as µ slowly varies. The eigenspaces of
the ε = 0 linear system are equilibria in the projective dynamics and collide in a fold bifurcation at µc.
For larger µ, the corresponding eigenspaces become complex and hence the projective dynamics become
oscillatory. This winding allows for subspaces to traverse more of the phase space, increasing the likelihood
of an intersection. For 0 < ε � 1 these curves of equilibria perturb to normally hyperbolic invariant slow
manifolds, with one-dimensional strong unstable fibers outside a neighborhood of µc. To get around the loss
of normal hyperbolicity near µc, we use blow-up techniques to track the attracting slow-manifold and its
unstable fibers around the fold where it can intersect W s(1, 0, 1).

We note that our theoretical approach could also be extended to establish non-monotonic fronts with a fi-
nite number of small oscillations around 0. These solutions correspond to additional windings of W u(0, 0,−1)
around the line u = v = 0 and require the use of additional projective coordinate charts. As we anticipate
such fronts to be unstable, we do not consider them rigorously in this work. See Sections 8.1 and 8.2 for
more detailed discussion on these topics.

1.3. Fronts created by a stationary quench (c = 0): Phenomena and numerics. A stationary
quench is modeled by the PDE (1.1) with c = 0. Physically, the state u = 0 is linearly unstable on the
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negative half of the domain and stable on the positive half. For small non-negative initial data, a stationary
front forms, and its profile is governed by the following spatial ODE:

(1.15) uξξ = −µu+ u3, µξ = −ε(1− µ2), µ(0) = 0,

where ξ = x− ct reduces to ξ = x. The front interface is controlled by the slow spatial ramping through the
pitchfork bifurcation, which occurs at ξ = 0, where µ = 0. Indeed, in the three-dimensional (u, v = uξ, µ)
phase space, system (1.15) with ε = 0 has a pair of saddles at (±√µ, 0, µ) and a center at (0, 0, µ) for each
µ > 0, and these merge in a pitchfork bifurcation at µ = 0, so that there is only a saddle fixed point at the
origin for each µ < 0. Then, for ε > 0 and small, solution profiles of (1.15) are depicted in Figure 4. The
solutions lie near the curve u =

√
µ for large negative ξ, and near u = 0 for large positive ξ. In between,

in a neighborhood of ξ = 0, the solutions slowly drop below
√
µ but then quickly rise above it, with the

exponentially decaying tail of the front being located slightly ahead of the instantaneous bifurcation point
µ = 0. Hence, the front interface appears to lie ahead of µ = 0. From a PDE perspective, this advance of
the front is caused by the lack of a drift term so that diffusion connects the front through a decaying tail
across ξ = 0.

Fig. 4. Left: the solutions of (1.15), i.e., the system with c = 0, for a range of small ε values, compared with
√
µ and

zoomed in near ξ = 0; Right: the curves u− Re
√
µ for the same range of ε values as in the left plot. Here ξ̃ = εξ.

It turns out that the second Painlevé equation [1, 7, 9] lies at the heart of system (1.15). This may be
seen informally by deriving the leading order asymptotics for 0 < ε� 1 as follows. Substitute the closed form
expression µ(ξ) = − tanh(εξ) into (1.15) to find uξξ = tanh(εξ)u+u3. Next, scale η = ε1/3ξ and u =

√
2ε1/3ũ,

which corresponds to the significant degeneration of the equation in the neighborhood of ξ = 0 and u = 0
where the instantaneous pitchfork bifurcation occurs. The equation becomes ũηη = ε−2/3 tanh(ε2/3η)ũ+2ũ3,
where the factor of

√
2 in the scaling of u has put the coefficient on the cubic term into standard form. Finally,

Taylor expanding, one obtains

(1.16) ũηη = (η +O(ε4/3η3))ũ+ 2ũ3.

Therefore, we see that, for any finite interval of values of η, the parameter ε can be taken to be small enough
so that the equation is a perturbation of the second Painlevé equation (PII),

(1.17) wηη = ηw + 2w3.

The key solution of interest here is the Hastings-McLeod solution, wHM(η) [20], which is the unique
positive, monotone solution of (1.17) which decays as η → +∞ and satisfies wHM(η) ∼

√
−η/2 as η → −∞.

In more detail, it has the following asymptotics

wHM(η) ∼ Ai(η) as η →∞,(1.18)

wHM(η) ∼
√
−η/2 as η → −∞,(1.19)

dwHM

dx
(η) < 0 for all η.(1.20)
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Here, Ai(η) denotes the Airy function. We note that all solutions of (1.17) which decay to zero as η → +∞
satisfy w(η) ∼ kAi(η) as η → +∞ for some k ∈ R. Parameterizing this family, wk(η), by k ∈ R, we note
that wHM = w1(η) partitions this family into two distinct classes. For |k| > 1, the solution wk(η) decays in
oscillatory fashion as η → −∞. For |k| < 1, the solution wk(η) has a pole at some finite point η = c0(k) < 0.
That is wk(η) ∼ sign(k)/(η − c0(k)) as η → c0(k)+, where we note that c0(k)→ −∞ as |k| → 1+. Proofs of
these results can be found in [20]; see also Chapter 32 of the Digital Library of Mathematical Functions [9,
§32.11(ii)], as well as [3, 4]. Also note, by symmetry, the solution with k = −1 is the other separatrix, with
asymptotics w−1(η) ∼ −

√
−η/2 as η → −∞.

We note the solution wHM perturbs to a solution ũHM(η) of (1.16), which is the unique one satisfying
the same asymptotic boundary conditions (1.18) - (1.20). Translating back to the original variables, we
define

uHM (ξ) =
√

2ε1/3wHM (ε1/3ξ),(1.21)

which, for each ε sufficiently small, formally gives the front of (1.15) to leading order on any finite interval
about ξ = 0. The numerically obtained solutions of the full system are compared to this rescaled Hastings-
McLeod solution in Figure 5.
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Fig. 5. Left: front solutions as functions of ξ̃ = εξ from numerical continuation for ε = 9.81 ∗ 10−3 (blue solid),
ε = 4.21 ∗ 10−3(yellow solid), and ε = 8.27 ∗ 10−4(green solid) with the rescaled connecting solution uHM of (1.17) (black
dashed). The blue, yellow, and green curves lie on top of each other for much of this plot. Right: zoom in of same solution
profiles showing good agreement with the prediction uHM . The numerical solution of (1.17) was obtained using the Matlab
Chebfun package [11].

1.4. Existence result for stationary fronts with c = 0 . With the above intuition in mind, we
state the main result for c = 0. The equation (1.15) may be written as a third-order autonomous system,

uξ = v,(1.22)

vξ = −µu+ u3,(1.23)

µξ = −ε(1− µ2), µ(0) = 0.(1.24)

The front of (1.22)-(1.24) is a heteroclinic orbit connecting the fixed points (u+, v+, µ+) = (1, 0, 1) to
(u0, v0, µ−) = (0, 0,−1), and it lies in the transverse intersection of the unstable and stable manifolds of
these fixed points, respectively.

Theorem 1.2. For each ε > 0 sufficiently small, system (1.22)-(1.24) has a heteroclinic orbit (u∗, v∗, µ∗)
in the transverse intersection of Wu(1, 0, 1) and W s(0, 0,−1). Furthermore, there exists a small ρ > 0,
independent of ε, such that the front satisfies

(1.25) u∗(ξ) = uHM (ξ) +O(ε2/3), for all |ξ| ≤ ρε−1/3.

where uHM (ξ) =
√

2ε1/3wHM (ε1/3ξ) and wHM is the unique Hastings-McLeod solution of (1.17).

The estimate (1.25) implies that the scaled Hastings-McLeod solution gives the leading order inner solution
in the region |µ| ≤ ρε2/3. A comparison of the leading-order inner solution with the numerically-obtained
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front solutions for two small ε values is given in Figure 5. We add that, to make it easier to compare solutions
for different ε, the solutions are plotted against the variable ξ̃ = εξ, and the leading order asymptotics take
the form

u∗(ξ̃/ε) ∼ ε1/3wHM (ε−2/3ξ̃), |ξ̃| . ε2/3.(1.26)

This theorem is proven using geometric desingularization, or “blow-up” of system (1.22)-(1.24), near the
point (u, v, µ) = 0, where the critical manifolds for ε = 0 lose hyperbolicity. Here this point is blown-up into
a 3-sphere whose singular dynamics are controlled by Painlevé’s second equation at leading order. We use
inclination lemmas to track the desired invariant manifolds into a neighborhood of the sphere. We then use
exponential trichotomies to lift the transversality of the Hastings-McLeod solution on the singular sphere
and track Wu(1, 0, 1) and W s(0, 0,−1) across the sphere and show they also intersect transversely.

As part of the analysis here of the fronts created by a stationary quench, we show that the Hastings-
McLeod solution lies in the transverse intersection of invariant stable and unstable manifolds of (1.17). In
the extended phase of (1.17), these manifolds consist of solutions which satisfy exponential growth and decay
conditions as η → ∞ and w → 0 and of solutions satisfying exponential growth and decay conditions as
η → −∞ and w →

√
−η/2. As discussed above, the Hastings-McLeod solution is the unique solution of the

Painlevé II equation which separates two different types of solutions. Namely, among all solutions that decay
asymptotically proportionally to an Airy function as z → +∞, it separates those which undergo oscillatory
decay as z → −∞ from those which have a simple pole at some negative value of z. These two different
classes of solutions lie on different sides of the transverse intersection of the stable and unstable manifolds.
Moreover, establishing this transverse intersection for (1.17) is also a natural building step for showing that
the stationary front of the PDE (1.1) lies in the transverse intersection of invariant manifolds.

Physically, the Allen-Cahn type PDE studied here may also be viewed as a prototype system for studying
more general problems in which there is a slowly-varying parameter ramp in space. Such situations arise for
example in Taylor vortex flow when there is a time-independent parameter ramp which varies slowly in space
[38, 37]. The governing equations are much more complex there, but experimental results and asymptotic
analysis shows that the slowly-varying spatial ramp can induce the selection of a unique pattern [38, 39].

Remark 1.3. Earlier analyses of slow passage through pitchfork bifurcations have involved the case of a
generic center equilibrium undergoing a slow dynamic pitchfork bifurcation in which the center becomes a
saddle and two new centers emerge. In Hamiltonian mechanics, this corresponds to a single well potential
slowly changing into a double well. These earlier analyses [18, 33] were carried out using singular perturbation
theory and matched asymptotic expansions. In contrast, because the pitchfork bifurcation encountered here
is of the opposite type, with a saddle point becoming a center and giving birth to two saddles (and as a
result the full Allen-Cahn PDE transitions from one stable state to another), a rigorous analysis is possible
by exploiting the hyperbolicity on both sides of µ = 0 and by using geometric desingularization to study the
loss of hyperbolicity in a neighborhood of µ = 0. Also, in principle, one could use a complex time variable,
obtain the formal asymptotic results here from the the earlier works [18, 33].

1.5. Geometric analysis of slow passage through pitchfork bifurcations. . The analyses of
dynamic fronts for 0 < c < 2 (Theorem 1) and stationary fronts for c = 0 (Theorem 2) both involve slow
passage through pitchfork bifurcations. Hence, in this brief subsection, we comment further on the relation of
these results to the standard Geometric Singular Perturbation Theory (GSPT) approach and the method of
geometric desingularization (aka ’blow-up’), which have been used for many problems involving slow passage
through bifurcations, among other topics.

Fundamental results about slow passage through pitchfork bifurcations were established in [31]. There,
systems with one fast and one slow variable were studied. The method of geometric desingularization was
used to carry out a comprehensive analysis of the geometry of the invariant manifolds, demonstrating the
delay in the onset of the instability due to the slow passage through bifurcation. Building on these results,
the analysis of the spatial ODE (1.15) governing stationary fronts with c = 0 (equivalently the third-order
autonomous system (1.22) - (1.24)) may be viewed as a natural next step. Indeed, both GSPT and blow-up
are used here to study slow passage through the super-critical pitchfork bifurcation at µ = 0 in this system,
see the discussion in Section 1.4 and also the proof of Theorem 1.2 in Sections 5-7. System (1.22)-(1.24)
also has one slow variable, however the presence of two fast variables induces new geometry and requires the
tracking of additional hyperbolic directions.
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For dynamic fronts with 0 < c < 2, the governing system is also a two-fast and one-slow system which
exhibits slow passage through a pitchfork bifurcation, see system (1.3)-(1.4), or equivalently system (1.7)-
(1.8). Hence, from the point of view of GSPT and geometric desingularization, it would also be natural to
begin the proof by desingularizing the origin, where the instantaneous pitchfork bifurcation occurs, exactly
as is done in the proof of Theorem 1.2. Indeed, it should be possible to establish the existence of these fronts
also by using a strategy similar to that used to establish Theorem 1.2.

Considering the problem in the ζ-coordinate, one would study the ε = 0 two-dimensional phase portraits
in u, v for µ ∈ [−1, 1], understanding source-saddle connections between the equilibria S+ = (

√
µ, 0, µ) and

S0 = (0, 0, µ) for µ > 0. Then for 0 < ε� 1, Fenichel theory gives the persistence of the curves of equilibria
as slow invariant manifolds (indeed S0 persists trivially), as well as the two-dimensional invariant manifolds,
W u(0, 0,−1) for µ < −δ and W s(1, 0, 1) for µ > δ for a small δ > 0, which contain them. As the ε = 0
unstable manifold of (0, 0, µ) continues as a strong unstable manifold for 0 ≤ µ < µc, one would then use
canard theory to continue W u(0, 0,−1) into µ > 0. As µ passes above µc, the continuation of this manifold
would begin to spiral around the origin and one would seek to locate transverse intersections with W s(1, 0, 1).
It is in this last part which the projective approach will be necessary in revealing the precise O(ε2/3) delay
of intersection in µ.

Despite the elegance of this approach, we found it more convenient and approachable to use projectivized
coordinates throughout the entire argument. These coordinates enable us to track the relevant invariant
manifolds all the way from µ = −1, through the instantaneous pitchfork at µ = 0, all the way through
µ = µc, without having to blow up the origin or use canard theory. Moreover, by using these projectivized
variables, one directly understands the source of the O(ε2/3) term in µf , which is an important component
of the front dynamics, as shown in Section 3.

1.6. Outline. The analysis of PDE (1.1) in the case of c ∈ (0, 2) and the proof of Theorem 1.1 are
presented in Sections 2-4. In particular, in Section 2, we set up our theoretical approach, define the projective
coordinates, and describe the singular system with ε = 0. In Section 3, we use Fenichel theory and geometric
blow-up to unfold the dynamics and track the relevant invariant manifolds for 0 < ε� 1. Then, in Section 4,
the desired heteroclinic intersection is established in a neighborhood of the dynamic fold, hence completing
the proof of Theorem 1.1. Next, the analysis of PDE (1.1) in the case of c = 0 and the proof of Theorem
1.2 are presented in Sections 5-7. In Section 5, we begin the study of stationary fronts in the c = 0 case,
using a geometric blow-up of a neighborhood of the instantaneous pitchfork bifurcation point. Then, Section
6 establishes that the Hastings-McLeod solution of (1.17) exists in the transverse intersection of invariant
manifolds, and then that the singular heteroclinic representing the stationary front created by the quench
also exists in the transverse intersection of invariant manifolds of the full system. The proof of Theorem 2 is
completed in Section 7, by establishing the inclination properties of invariant manifolds, and showing that the
transverse intersection exists for all 0 < ε� 1. In Section 8, we complement the proofs of Theorems 1.1 and
1.2 by giving an argument showing the fronts of Theorem 1.1 are nonlinearly asymptotically stable, discussing
the existence of other, non-monotonic front solutions possible in the wake of the quench for c ∈ (0, 2), and
discussing parameter regimes not covered by our result, such as the c, ε ∼ 0 regime. We provide additional
numerical results to motivate future studies, as well as discuss other slowly-varying heterogeneities which we
expect to induce novel front invasion behavior.

2. Setup for traveling-waves with c ∈ (0, 2). In this section, and in Sections 3-4, we consider O(1)
values of the speed c ∈ (0, 2). We linearize system (1.10) - (1.12) about the equilibria (u0, v0, µ−) and
(u+, v+, µ+). The Jacobian at (u0, v0, µ−) has eigenvalues

ν−,ε = 2ε, ν−,± =
c

2
±
√
c2

4
− µ− =

c

2
±
√
c2

4
+ 1.

Thus, it is a hyperbolic saddle with two-dimensional unstable manifold W u(0, 0,−1), whose tangent space
is spanned by the vector (1, ν−,+, 0) in the µ ≡ −1 plane and by the vector (0, 0, 1)T in the direction of the
µ−axis. Then, the Jacobian at (u+, v+, µ+) has eigenvalues

ν+,ε = −2ε, ν+,± =
c

2
±
√
c2

4
− µ+ + 3u2

+ =
c

2
±
√
c2

4
+ 2.
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Thus, it is a hyperbolic saddle, with two-dimensional stable manifold, W s(1, 0, 1), whose tangent space is
spanned by the vector (1, ν+,−, 0)T in the µ ≡ 1 plane and by the vector (0, 0, 1)T in the direction of the
µ−axis. As mentioned above, we wish to locate intersections W u(0, 0,−1) ∩W s(1, 0, 1), which consists of
a pair of two-dimensional manifolds in three dimensional space, indicating we generically expect a one-
dimensional intersection of these manifolds and hence a locally unique trajectory for each 0 < ε� 1.

2.1. Projective coordinates/blow-up. For ε = 0, each µ = constant plane is invariant with equilibria
(0, 0, µ) for all µ and (±√µ, 0, µ) for µ ∈ [0, 1]. The latter are saddles for all µ ∈ (0, 1]. The former is a
hyperbolic saddle for µ < 0, degenerate unstable node for µ = 0, unstable node for µ ∈ (0, c2/4). It is a
degenerate source for µ = c2/4 with two-dimensional Jordan block, and is an unstable spiral for µ ∈ (c2/4, 1].
We remark that the algebraically-double eigenvalue found at µ = c2/4 is also located using the double-root
calculation given in Section 1.1 above. In order to unfold the dynamics near (u, v) = (0, 0) for µ ∈ [−1, 1]
and 0 < ε� 1, we perform a directional blowup in the variables

(2.1) z̃ = v/u, u.

See [23] for a recent work using a similar approach in a different context. These coordinates allow one to
track the manifold W u(0, 0,−1) from µ = −1 through the change in linear stability at µ = 0 and through
the Jordan block at µ = c2/4.

In the coordinates (2.1), the system (1.10)–(1.12) becomes

z̃ζ = −z̃2 + cz̃ − (θ + c2/4) + u2,(2.2)

uζ = z̃u,(2.3)

θζ = ε(1− (θ + c2/4)2),(2.4)

where we have also set θ := µ− c2/4 to translate the point µ = c2/4 to the origin. Here, µ+ = 1 corresponds
to θ+ := 1− c2/4 and µ− = −1 to θ− := −1− c2/4.

Remark 2.1. In order to unfold the dynamics in the region near the origin, one generally would blow up
the line of equilibria (0, 0, µ) into a cylinder via a polar coordinate blow up u = r cosφ, v = r sinφ. Such
a coordinate change, while elucidating the small amplitude dynamics, would push the non-trivial equilibria
(u, v) = (

√
µ, 0) away to infinity in the limit r → 0, requiring multiple coordinate charts to construct the

intersection. Hence, we instead perform a directional blow-up, projecting the dynamics on different charts of
the cylinder using blow-up in both the u and v directions, z̃ = v/u, u and w̃ = u/v, v, respectively. We find
that only the first chart is required to construct the monotonic front given in Theorem 1.1. We also note
that both charts, or the aforementioned cylindrical blow-up, would be needed to construct non-monotonic
fronts with oscillatory tails. See Section 8.2 and Figure 10 for more discussion on the non-monotonic fronts.

There are several key features of system (2.2)-(2.4). A central feature is that the plane

(2.5) U0 = {u = 0}

is invariant for all ε ≥ 0. With ε = 0, θ is a constant, and U0 contains the equilibria of (2.2) -(2.4), which
are at (z̃, u, θ) = (z̃±(θ), 0, θ) for each θ ∈ [−1− c2/4, 0]. Here, z̃± satisfies

−z̃2 + cz̃ − (θ + c2/4) = 0, Re z̃+ ≥ c/2.

These equilibria collide in a saddle-node bifurcation at θ = 0 (that is µ = c2/4) and z̃ = c/2. Also, at
θ = −c2/4 (that is µ = 0) there is a pitchfork bifurcation from the point (z̃−, 0, θ) in which a branch of
equilibria emerges

(z̃∗, u∗, θ) = (0,
√
θ + c2/4, θ), θ ∈ (−c2/4, 1− c2/4].

These lie out of the plane U0 and correspond to the non-trivial state (u, v) = (
√
µ, 0). Due to reversibility,

there is also a branch of equilibria (0,−
√
θ + c2/4, θ) for the same interval of fixed θ values, which correspond

to the other non-trivial state (u, v) = (−√µ, 0) that also bifurcates at θ = −c2/4.
For ε > 0, only the points (z̃±, 0, θ−) and (z̃∗, u∗, θ+) persist as equilibria, and only the planes θ = θ±

remain invariant. Moreover, on the invariant plane U0, the flow of (2.2) - (2.4) with 0 < ε� 1 is governed by
an algebraic Ricatti-equation, which tracks the evolution of 1-D subspaces of the (u, v)-linearized dynamics
and which can be put into the normal form for slow-passage through a fold.
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Remark 2.2. The dynamics on the invariant plane U0 correspond to the dynamics on the blown-up
cylinder induced by the linear flow, and the reduced z̃, θ system tracks the dynamics of one-dimensional
subspaces in the Grassmanian Gr(2, 1) under the linearized flow. Here, when ε = 0, equilibria of the
projectivized flow, determined by the z̃-equation, are given by spatial eigenvalues ν of the (u, v)-linearization
about the origin determined by the linear dispersion relation (1.6).

In order to study the dynamics on U0 and those of the full system (2.2) - (2.4), we make one further
simplifying step. In particular, we complete the square z̃ = z + c/2, obtaining

zζ = −z2 − θ + u2,(2.6)

uζ = (z + c/2)u,(2.7)

θζ = ε(1− (θ + c2/4)2).(2.8)

We shall work with this system in Sections 2 - 4 to establish the main results for the heteroclinic orbit Γε,
and prove Theorem 1.1. In the next subsection, we first study the ε = 0 system. Then, in the subsequent
subsections, we will analyze the dynamics for 0 < ε � 1 and show that there is a transverse intersection of
the unstable manifold of (z+, 0, θ−) and the stable manifold of (z∗, u∗, θ+), for sufficiently small ε > 0. The
heteroclinic Γε will lie in that intersection, see Figure 6 for a depiction.

u z

=-c/2

Θ

Θ=Θ- Θ=0 Θ=Θ+

U0

S
�

*

z+

Fig. 6. Phase portrait for (2.6)-(2.8) for 0 < ε � 1. Red and blue curves give the critical attracting and repelling sets

S
a/r
0 , contained in the invariant plane {u = 0} (black), which make up the fold curve for ε = 0. Saε , depicted in orange, gives

the perturbed slow manifold for ε > 0. Green curve gives the perturbed slow manifold for the ε = 0 equilibrium curve (z∗, u∗, θ).
Unstable manifold Wu(z+, 0, θ−) in orange foliated over Saε , stable manifold W s(z∗, u∗, θ+), each two-dimensional with one
slow dimension and one fast dimension.

2.2. The ε = 0 dynamics. We next study the ε = 0 limit of (2.6) - (2.8). For ε = 0, the planes
{θ = constant} are invariant. The phase portraits on these invariant planes are depicted in Figure 7. The
equilibria are now represented by

(z±(θ), u) = (±
√
−θ, 0), θ ≤ 0; (z∗, u∗(θ)) = (−c/2,

√
θ + c2/4), θ > −c2/4.

For each θ < 0, the equilibrium (z+, 0, θ) is stable in the z-direction, and for each θ ≤ 0 it is unstable in the
u-direction. We let W̃ u(z+, 0, θ) denote the 1-D unstable manifold of (z+, 0, θ). The equilibria (z−, 0, θ) are
unstable in the z-direction for all θ < 0. Then, in the u-direction, they are stable for θ < −c2/4 and unstable
for θ ∈ (−c2/4, 0]. Finally, the other equilibria (z∗, u∗, θ) of (2.6)-(2.8) with ε = 0 have one-dimensional
stable manifolds, W̃ s(z∗, u∗, θ). The bounded portions of these manifolds converge in backward time for
θ ≤ 0 to the equilibrium (z−, 0, θ) (as may be seen from a null-cline analysis).

With θ as a parameter, the (z, u)-vector-field has Jacobian(
−2z 2u
u z + c/2

)
.

At the equilibrium (z+, 0) = (
√
−θ, 0), the Jacobian has the following eigenvalue and eigenvector pairs:

ν = −2z+, V = (1, 0)T , ν = z+ + c/2, V = (0, 1)T .
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-c/2

Θ=Θ- Θ=0Θ=-c2/4 Θ=Θ+

θ
1/2

θ(θ+c2/4)-1/2

z

u

z z

u u

z+
z- 0

Fig. 7. Top: Phase portrait for (2.6)-(2.8) for ε = 0. Each point (z+, 0, θ) on Sa0 has one-dimensional unstable manifold

W̃u(z+, 0, θ) (orange fibers), while each point (z∗, u∗, θ) on S∗0 has a one-dimensional stable manifold W̃ s(z∗, u∗, θ) (green
fibers). Bottom: (z, u) phase portraits for fixed θ and ε = 0 in the cases −c2/4 < θ < 0, θ = 0, and θ > 0 from left to right.
Light grey lines depict nullclines. The green curves denote W̃ s(z∗, u∗, θ). In the bottom right figure, the trapping line L defined
in (2.13) is depicted in light green.

Hence, it is a saddle for each θ < 0, and the local unstable manifold is given as

W̃ u(z+, 0, θ) := {(z, u) : z = hu(u; θ)}(2.9)

hu(u; θ) = z+ +
u2

4z+ + c
− 3u4

2(3z+ + c)(4z+ + c)2
+O(|u|6),(2.10)

while its stable manifold is simply a subset of the z-axis. At the equilibrium (z−, 0) = (−
√
−θ, 0), the

Jacobian has eigenvalue and eigenvector pairs

ν = −2z−, V = (1, 0)T , ν = (z− + c/2), V = (0, 1)T .

Hence, the equilibrium is a saddle for θ < −c2/4 and a source for −c2/4 < θ < 0. We remark that
for −c2/36 < θ < 0 the direction (1, 0)T is the weak unstable direction and (0, 1)T is the strong unstable
direction, while these roles are reversed for θ < −c2/36. In the former case, we can conclude that in backwards
time, W̃ s(z∗, u∗, θ) approaches the equilibrium (z−, 0) tangentially along the z-axis (see Fig. 7, bottom left
frame). Similar analysis can be done to obtain the expansion for the strong unstable manifold in the u-
direction but, as it is not needed for this analysis, we omit it.

Finally, at the equilibrium (z∗, u∗), the Jacobian has the following eigenvalue and eigenvector pairs:

ν∗,± = c/2±
√

3c2/4 + 2θ, V± =

(
ν∗,±√
θ + c2/4

, 1

)T
.
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Hence, it is a saddle. The local stable manifold is given by a graph over the z-coordinate as

W̃ s(z∗, u∗, θ) := {(z, u) : u = hs(z; θ)}

(2.11)

hs(z; θ) = u∗ + b1(z − z∗) + b2(z − z∗)2 + b3(z − z∗)3 +O(|z − z∗|4)

b1 =
−c− (3c2 + 8θ)1/2

2
√
c2 + 4θ

, b2 =
(c+ (3c2 + 8θ)1/2)(c(3c2 + 8θ)1/2 − 2(c2 + 6θ))

2(c2 + 4θ)3/2(c− 3(3c2 + 8θ)1/2
,

b3 =
c(c+ (3c2 + 8θ)1/2)

(
−2(c2 + 6θ) + c(3c2 + 8θ)1/2

) (
4(2c2 + 7θ) + c(3c2 + 8θ)1/2

)
(c2 + 4θ)5/2(c− 3(3c2 + 8θ)1/2)2(c− 2(3c2 + 8θ)1/2)

.

(2.12)

Using these facts with a standard nullcline analysis, one obtains the phase portraits in Figure 7. From
this analysis and a trapping region argument, one can directly see that for each θ > 0 small the stable
manifold W̃ s(z∗, u∗, θ) intersects the u-axis at a point u with 0 < u <

√
θ. It turns out we can obtain better

control of this intersection point. This is the subject of the following lemma:

Lemma 2.3. For each θ > 0 sufficiently small, W̃ s(z∗, u∗, θ) intersects the set {z = 0} transversely at
one point (0, us(θ)) with

0 < us(θ) ≤
θ√

θ + c2/4
.

Proof. We construct a trapping region for W̃ s(z∗, u∗, θ), flowed backwards in ζ. Let

(2.13) L := {(z, u) |u = u∗ +m(z − z∗), z ∈ (z∗, 0]}, m := − c

2
√
θ + c2/4

,

where m is the slope of the z-nullcline at (z∗, u∗). We find L ∩ {z = 0, u ∈ (0,
√
θ)} 6= ∅ for all θ > 0 since

u∗ −mz∗ =
√
θ + c2/4− c2

4
√
θ + c2/4

=
θ√

θ + c2/4
> 0

Next, one can readily calculate that on L

uζ
zζ
−m =

1√
1 + 4θ/c2

+

√
c2 + 4θ(2cz − 4θ)

4θ(c+ 2z)
< 0,

for all z ∈ (−c/2, 0) and any θ > 0 sufficiently small. Hence, the flow points “outwards” along L in forward
time. This shows that the slope of the vector field along L is more negative than that of the line L itself, and
hence that the flow points outward along L. Combining this with the facts that the flow also points outward
along the u-nullcline at z = −c/2 and that the u = 0 line is invariant, we obtain that W̃ s(z∗, u∗, θ) must
intersect I := {(0, u) | 0 < u <

√
θ} with u < θ/

√
θ + c2/4. Finally, transversality follows by the properties

of the vector field along the line I.

Since L defines a boundary of the trapping region in the above proof, we also have the following corollary:

Corollary 2.4. Let δ > 0 be small, fixed, and independent of ε. There exist a θ0 > 0 sufficiently small
and a constant C > 0, such that the intersection point (−δ, us,δ(θ)) := W̃ s(z∗, u∗, θ) ∩ {z = −δ} satisfies

(2.14) 0 < us,δ(θ) ≤ C(θ + δ),

uniformly for all θ ∈ (0, θ0).

3. Invariant manifolds, foliations, and slow flow . In this section, we analyze the dynamics of
system (2.6)–(2.8) for 0 < ε � 1. Our goal will be to use geometric singular perturbation theory [13, 25]
to view W u(z+, 0, θ−) as a perturbation of the union of ε = 0 manifolds ∪θ∈(−1−c2/4,0]W̃

u(z+, 0, θ) and

W s(z∗, u∗, θ+) as a perturbation of the union of ε = 0 manifolds ∪θ∈(−c2/4,1−c2/4]W̃
s(z∗, u∗, θ).
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Slow passage through a fold. Let us begin with W u(z+, 0, θ−). First, for ε = 0 the curve of equilibria

Sa0 := {(z, u, θ) : z = z+(θ), u = 0, θ ∈ [−1− c2/4, 0)}

is a normally hyperbolic invariant manifold with expanding direction in the u direction and attracting
direction in the z direction for all θ ≤ −b, for some b > 0 fixed, small, and independent of ε. Note that this
family collides with a repelling curve of equilibria Sr0 := {z = z−(θ), u = 0, θ ∈ [−1 − c2/4, 0)} in a generic
fold bifurcation at θ = 0, and hence loses normally hyperbolicity at θ = 0.

Applying Fenichel theory to the dynamics on the invariant set U0 = {u = 0}, that is to the fast-slow
subsystem on the invariant (z, θ)-plane, we see that the critical manifold Sa0 perturbs smoothly in 0 < ε� 1
to a 1-D invariant slow manifold Saε ⊂ U0 for θ < −b < 0. Also note that Saε makes up the weak unstable
manifold of the left equilibrium (z+, 0, θ−). Since θζ ≈ ε near θ = 0, Theorem 2.1 of [30] allows one to track
Saε forward in θ ≥ −b past the fold point at the origin. Further, one can rigorously calculate the bifurcation
delay in θ > 0. In particular, setting

Σ̃δ := {(z, θ) : z = −δ, θ ∈ (0, δ)},

one can adapt Theorem 2.1 [30] to obtain the following result for the fast-slow subsystem on U0:

Proposition 3.1. Let δ > 0 be fixed small. There exists an ε0 > 0 such that, for all 0 < ε ≤ ε0, the
slow invariant manifold Saε passes through the section Σ̃δ at a point (z, θ) = (−δ, θa(ε)) with

(3.1) θa(ε) = Ω0

(
1− c4

16

)2/3

ε2/3 +O(ε ln(ε)),

where Ω0 is the smallest positive zero of J−1/3(2z3/2/3) + J1/3(2z3/2/3) and J±1/3 are Bessel functions of
the first kind. (Note z is a generic complex variable here, distinct from z introduced in (2.6) -(2.8), and also
Ω0 = 2.338107...)

Proof. Define the following change of coordinates

z = −(1− c4/16)1/3x̃, θ = −
(

1− c4

16

)2/3

ỹ, ζ = τ

(
1− c4

16

)−1/3

.

On the invariant set U0, the system (2.6)–(2.8) then takes the form

dx̃

dτ
= x̃2 − ỹ,(3.2)

dỹ

dτ
= ε

(
−1− c2

2(1− c4

16 )1/3
ỹ + (1− c4

16
)1/3ỹ2

)
.

This system is equivalent to equation (2.5) in [30] with their g defined as g(x̃, ỹ, ε) =

(
−1− c2

2(1− c416 )1/3
ỹ + (1− c4

16 )1/3ỹ2)

)
.

Hence, Theorem 2.1 in [30] shows that ỹ = −Ω0ε
2/3 +O(ε ln(ε)) on Σ̃δ. Translating this back, one obtains

θa(ε), and the result is established.

Next, notice that the subset

Ur0 := {(z, u, θ) : z > −c/2, u = 0},

of the invariant plane U0, is a normally hyperbolic (repelling) invariant manifold for all ε ≥ 0 (for completeness
we also notice that the corresponding subset Ua0 ⊂ U0 with z < −c/2 is normally attracting). The dynamics in
the normal direction to Ur0 are exponentially repelling, while the dynamics in the tangential directions along
Ur0 are exponentially attracting in a neighborhood of Sa0 . Hence, the dynamics in a tubular neighborhood
of Sa0 are smoothly foliated by 1-D unstable fibers which we denote by Fuu

(z,θ). The Fenichel theory [13, 25]
guarantees that these fibers can be written as a graph over the normal direction

Fuu
(z,θ) := {(z, u, θ) | (z, θ) = huu(u; z, θ), |u| ≤ γ},
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for some γ > 0 small and independent of ε. Here, huu is Cr-smooth in u, Cr−1-smooth in the base-point
(z, θ) for any r ∈ N, and satisfies

huu(0; z, θ) = (z, θ),
d

du
huu(0; z, θ) = 0.

This foliation satisfies the invariance condition

Φζ(Fuu
(z,θ)) ⊂ F

uu
φζ(z,θ),

where Φζ is the flow of the full 3-D system, and φζ is the flow on the invariant set U0. For the base points

on Sa0 in particular, these fibers are given by the unstable manifolds W̃ u(z+, 0, θ). This foliation persists
smoothly for 0 < ε� 1, but we suppress the ε-dependence to simplify notation.

For base points on the perturbed slow manifold Saε , the union of fibers gives a local representation of
the unstable manifold of the point (z+, 0, θ−), and Fuu

(z+,θ−) gives its local strong unstable manifold,

W u(z+, 0, θ−) ∩ {|u| ≤ γ} =
⋃

(z,θ)∈Saε

Fuu
(z,θ),

for some γ > 0 sufficiently small. See Figure 6 for a depiction. In addition, such a smooth foliation also
holds in a neighborhood of the origin (z, u, θ) = (0, 0, 0), since the dynamics in z are weakly exponential for
−1� θ < 0 and algebraic for θ ≥ 0.

As we are interested in how the manifold W u(z+, 0, θ−) behaves in a neighborhood of the origin, we
extend the section Σ̃δ into the u-direction, defining for δ, η, γ > 0 fixed small,

Σδ := {(z, θ, u) : z = −δ, θ ∈ (−η, η), u ∈ [0, γ)}.

We can now use the strong-unstable fibers over Saε to describe the intersection of W u(z+, 0, θ−) with Σδ.

Lemma 3.2. Fix δ, η, γ > 0 small. Then there exists an ε0 such that for all ε ∈ [0, ε0) the unstable
manifold W u(z+, 0, θ−) intersects Σδ transversely and is a graph in θ of a smooth function gu : R→ R over
the u-coordinate:

W u(z+, 0, θ−) ∩ Σδ = {(−δ, u, gu(u; ε)) , u ∈ [0, γ)}.
Proof. This follows by the transverse intersection of Saε with Σ̃δ, the fact that the fibers Fuu

(z,θ) are vertical
at leading order in u, and the smoothness of the fibers Fuu

(z,θ).

Next, we use Fenichel theory to conclude that, for 0 < ε � 1, the manifold W s(z∗, u∗, θ+) is a smooth
perturbation of the union of stable manifolds ∪θ>−c2/4W̃ s(z∗, u∗, θ) for ε = 0. Indeed the saddle curve

S∗0 := {(z, u, θ) = (z∗, u∗, θ) : θ ∈ (−c2/4, 1− c2/4)},

depicted in green in Figure 7, persists for 0 < ε � 1 as a 1-D normally hyperbolic invariant slow manifold
S∗ε . The asymptotic expansion of S∗ε is given by

z = − c
2

+ ε
1−

(
θ + c2

4

)2

2
(
θ + c2

4

) +O(ε2), u =

√
θ +

c2

4
− ε c

4

1−
(
θ + c2

4

)2

(
θ + c2

4

)3/2 +O(ε2).(3.3)

We have

Lemma 3.3. Fix δ, η, γ > 0 small. There exists an ε0 > 0 such that, for all ε ∈ (0, ε0), the invariant
manifold W s(z∗, u∗, θ+) intersects the section Σδ transversely in a curve which is described as the graph
gs : R→ R over the θ coordinate:

(3.4) W s(z∗, u∗, θ+) ∩ Σδ = {(−δ, gs(θ; ε), θ)}, gs(θ; ε) = O(ε+ θ + δ).

Proof. For ε = 0, existence, transversality, as well as the bound |gs(θ; 0)| ≤ C(θ + δ) for some C
independent of ε, follow by Lemma 2.3 and smooth dependence of W̃ s(z∗, u∗, θ) on θ. Then, for 0 < ε� 1,
Fenichel theory implies that the curve S∗0 of saddle equilibria (z∗, u∗, θ) for ε = 0 perturbs to a slow, normally
hyperbolic invariant manifold for 0 < ε � 1 which forms the weak stable manifold of (z∗, u∗, θ+). Also by
the Fenichel theory, the manifolds W̃ s(z∗, u∗, θ) perturb to the strong-stable fibers of W s(z∗, u∗, θ+). The
result then follows by smooth dependence on ε.
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From these two results, since the curve W u(z+, 0, θ−) ∩ Σδ is a graph over u and is vertical at leading
order and the curve W s(z∗, u∗, θ+) ∩ Σδ is a graph over θ, one generically expects the desired intersection
to exist for sufficiently small ε; see Figure 8. We demonstrate this in the next section. Furthermore, the
bifurcation delay prediction for θ can then be translated to a µ-prediction for the delay

µfr ≈ c2/4 + θa(ε),

recall (3.1), which will then establish (1.14).

u

θ
z

z=-�

( � gu(u;�))

(-�,gs(θ;�),θ)

s(z*,u*,θ+)

Wu(z+,

S�
a

Fig. 8. Dynamics near the origin, depicting the intersection of Wu(z+, 0, θ−) (orange) and W s(z∗, u∗, θ+) (green) with
the section Σδ (light blue) and how the transverse intersection is obtained. Intersections with Σδ are depicted as solid lines
(orange and green respectively) without arrows. Red and blue curves once again depict the ε = 0 fold curve Sa0 ∪ Sr0 .

Remark 3.4. For each fixed value of c ∈ (0, 2), Proposition 3.1 is an asymptotic result valid for sufficiently
small values of ε. Here, we observe that the opposite limit in which ε > 0 is fixed and c→ 2− is a different
singular limit. First, with ε > 0 fixed, there is no asymptotic time scale separation in the system (1.13)-
(1.15) on {u = 0} for the variables z and θ. More importantly, with c = 2, the system has a fixed point at
(z, θ) = (0, 0), and solutions with initial data in that region of the fourth quadrant between the parabola
θ = −z2 and the positive z-axis approach that fixed point, i.e., θ(ζ) ≤ 0 for all ζ. In contrast, for any value
of c < 2, no matter how close to 2, the origin is no longer a fixed point, and solutions with initial data in the

same region approach the invariant line {θ = 1− c2

4 } with z → −∞. Hence, the limit c→ 2− is a different
singular limit. In a manner similar to [16], we expect the absolute spectrum to once again play a role in
determining the value of θ on exit from a neighborhood of the origin, and hence the location of the front
interface for fixed ε > 0. We do not address this here, since our interest in the quenching problem is for
small ε.

4. Dynamics near origin: completing the proof of Theorem 1.1. To construct the desired
intersection, we use the foliation graph huu of U0 to straighten the fibers, and decouple the (z, θ)-dynamics
from the u dynamics. In these new coordinates, the unstable manifold W u(z+, 0, θ−) is vertical, while
W s(z∗, u∗, θ+) still intersects Σδ in a graph over θ. To begin, we use the hyperbolic dynamics normal to
Ur0 = {u = 0, z > −c/2} to straighten the fibers in a neighborhood of Ur0 so that the z and θ equations
become independent of u. In particular, the function huu, which defines the strong-unstable foliation of Ur0 ,
defines a smooth coordinate change

(z1, θ1) = huu(u; z, θ), u1 = u.

Here, we have that huu(u; z, θ) = I2 + h̃uu(u; z, θ) with h̃uu(u; z, θ) = O(u2) uniformly in z, θ, and ε, and
hence is locally invertible for |u| < γ.

By substituting (z, θ) = (huu)−1(z1, θ1) and u = u1 into (2.6)–(2.8) and using the invariance property ,
we obtain the following system:

z1,ζ = −z2
1 − θ1,(4.1)

u1,ζ = u1f1(z1, θ1, u1; ε),(4.2)

θ1,ζ = εf2(z1, θ1, u1; ε)(4.3)

for smooth functions f1, f2 with

f1(z1, θ1, 0; ε) = z1 + c/2, f2(z1, θ1, 0; ε) = 1− (θ1 + c2/4)2,
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and fi(z1, θ1, u; ε) − fi(z1, θ1, 0; ε) = O(u2) as u → 0. Note the dynamics on Ur0 are left unchanged. In a
neighborhood of Ur0 , the manifoldsW u(z1,+, 0, θ1,−) andW s(z1,∗, u1,∗, θ1,+) can be described by the dynamics
of the base points in Ur0 of the fibers which they intersect.

Next, in view of Lemma 3.2, the unstable manifold is now vertical,

W u(z+, 0, θ−) =
⋃

(z1,θ1)∈Saε

{(z1, u1, θ1) : |u1| ≤ γ}.

Thus, in (4.1)-(4.3),

(4.4) W u(z+, 0, θ−) ∩ Σδ = {(−δ, u, θa(ε)) : |u| ≤ γ},

where we recall that θa(ε) is the intersection of Saε with z1 = −δ defined in (3.1) (and which is unchanged
in these new coordinates since u = 0).

Furthermore, in view of Lemma 3.3, we can also conclude that in the new coordinates

(4.5) W s(z∗, u∗, θ+) ∩ Σδ = {(−δ, g̃s(θ; ε), θ)},

with |g̃s(θ; ε)| ≤ C(θ + ε), since the fibers Fuu vary quadratically in u. Hence, we seek intersections of the
curves described in (4.4) and (4.5). Equating the two curves, we obtain the matching equations

u = g̃s(θ; ε),(4.6)

θa(ε) = θ,(4.7)

where u and θ are free in (−γ, γ) and [0, η), respectively. Hence, for any ε ∈ (0, ε0), we choose θ = θa(ε)
and u = g̃s(θa(ε); ε), to conclude the desired intersection. We note that at the intersection location θa(ε) the
u coordinate is O(ε2/3). A standard finite-time argument shows that the additional delay in θ needed for
u(ζ) =

√
µc/2 = c/4 is then o(ε2/3) and thus higher-order. This completes the proof of the theorem.

5. Stationary fronts: geometric desingularization analysis. In this section, we begin the proof
of Theorem 1.2. That is we study fronts created by a stationary quench, which solve (1.3)-(1.4) with c = 0,

uξ = v,(5.1)

vξ = −µu+ u3,(5.2)

µξ = −ε(1− µ2), µ(0) = 0.(5.3)

Here, ξ = x− ct reduces to ξ = x. We first note system (5.1)-(5.3) is invariant under the reflection (u, v, µ)
to (−u,−v, µ). We then note that for ε = 0, the system (5.1)-(5.3) has normally hyperbolic manifolds which
are curves of saddle equilibria

S±0 = {(u, v, µ) = (±√µ, 0, µ), µ > η̃}(5.4)

S0
0 = {(u, v, µ) = (0, 0, µ), µ < −η̃},(5.5)

where η̃ > 0 is small and independent of ε. We examine these critical manifolds for ε = 0, as well as the
perturbed slow manifolds which exist for 0 < ε � 1 by Fenichel theory, in the four-dimensional extended
system

uξ = v(5.6)

vξ = −µu+ u3(5.7)

µξ = −ε(1− µ2)(5.8)

εξ = 0.(5.9)

We denote the family of such perturbed slow manifolds as S±ε and S0
ε and the union of them for ε ≥ 0 small

as M± and M0. These correspond to center-like manifolds in the extended system. As mentioned above,
for each ε-slice, S±ε forms part of the unstable manifold of the equilibria (u, v, µ) = (±1, 0, 1) while S0

ε forms
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part of the unstable manifold W u(0, 0, 1) for µ > η̃ and part of the stable manifold W s(0, 0,−1) for µ < −η̃.
These manifolds give the base points of fibers which foliate the manifolds they live in. For example S+

ε serves
as the base points of strong stable/unstable fibers which foliate W s/u(1, 0, 1). Hence, we wish to use the slow
manifolds to track the containing invariant manifolds and construct the desired heteroclinic intersection.

We wish to track the perturbed slow manifolds through a neighborhood of (u, v, µ) = (0, 0, 0), where
they lose normal hyperbolicity, using the quasi-homogeneous geometric blow up

(5.10) u = ru, v = r2v, µ = r2µ, ε = r3ε.

These coordinates blow up the origin (0, 0, 0, 0) into a 3-sphere S3 = {r = 0, u2 + v2 +µ2 + ε2 = 1}, which is
invariant under the induced flow. In particular, it is natural to study the dynamics on and near the sphere
using the following three charts defined by µ̄ = 1, ε̄ = 1, and µ̄ = −1, respectively:

Entry chartK1 : u = r1u1, v = r2
1v1, µ = r2

1, ε = r3
1ε1(5.11)

Rescaling chartK2 : u = r2u2, v = r2
2v2, µ = r2

2µ2, ε = r3
2(5.12)

Exit chartK3 : u = r3u3, v = r2
3v3, µ = −r2

3, ε = r3
3ε3.(5.13)

Here, xi denotes the variable x̄ ∈ {ū, v̄, µ̄, ε̄} in chart Ki. The change of coordinate map κ12 between the
charts K1 and K2, as well the map κ23 between K2 to K3 are given as

κ12 : u2 = ε
−1/3
1 u1, v2 = ε

−2/3
1 v1, µ2 = ε

−2/3
1 , r2 = ε

1/3
1 r1, ε1 > 0(5.14)

κ23 : u3 = (−µ2)−1/2u2, v3 = (−µ2)−1v2, ε3 = (−µ2)−3/2, r3 = r2(−µ2)1/2, µ2 < 0.(5.15)

We remark that the second mapping above, κ23, maps into the exit chart where µ̄ < 0. We next collect
information about the phase portrait near the sphere {r = 0} in each coordinate chart, first describing the
entry and exit charts K1,K3 and then the re-scaling chart K2.

Entry chart K1 phase portrait. In chart K1, the governing equations are

u′1 = v1 +
1

2
ε1u1(1− r4

1)(5.16)

v′1 = −u1 + u3
1 + ε1v1(1− r4

1)(5.17)

ε′1 =
3

2
ε21(1− r4

1)(5.18)

r′1 = −1

2
r1ε1(1− r4

1).(5.19)

Here, we recall that K1 is defined by µ1 = 1, and we have introduced the new time variable ξ1 = r1ξ to
desingularize the vector field, with the prime now denoting the derivative with respect to ξ1. We note that
the system is autonomous so that the reparametrization of solutions leaves the trajectories in phase space
intact. The system (5.16)-(5.19) has fixed points at p− = (−1, 0, 0, r1), p0 = (0, 0, 0, r1), and p+ = (1, 0, 0, r1)
for each r1 ≥ 0. These are exactly the points at which the invariant manifolds S−0 , S0

0 , and S+
0 , respectively,

enter the neighborhood of the blown-up singularity. The equilibrium p+, and indeed each equilibrium in
S+

0 , has one-dimensional stable and unstable eigenspaces contained in the (u1, v1) plane and two center
directions, one in the r1 direction, tangential along S+

0 , and the other given by the generalized eigenvector
(0, 1,−2/(1− r4

1), 0) for r1 > 0 and the eigenvector (0, 1,−2, 0) for r1 = 0 (note the former center direction
corresponds to the family of equilibria formed by S+

0 ). Thus, S+
0 lies inside of a two-dimensional center

manifold Mc,+ which, in the original extended system (5.6) - (5.9), corresponds to the family M+ of slow
manifolds for ε small. Due to the strong stable and unstable directions in the (u1, v1) directions, Mc,+

is normally hyperbolic with strong stable and unstable foliations. The union of the strong unstable fibers
forms a center-unstable manifold Mcu,+ which corresponds to W cu(1, 0, 1) in the original coordinates. In
K1, Mcu,+ contains the set of all bounded solutions as ξ1 → −∞.
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Furthermore, the hyperplane {r1 = 0} is an invariant set, and on it the dynamics reduce to

u′1 = v1 +
1

2
ε1u1

v′1 = −u1 + u3
1 + ε1v1

ε′1 =
3

2
ε21

r′1 = 0.

Hence, standard center manifold theory directly implies that, when restricted to {r1 = 0}, p± have one-
dimensional normally hyperbolic center manifolds, N±1 . Moreover, these are not unique due to the presence
of both hyperbolic repelling and attracting dynamics in the (u1, v1) plane. Note also that p0 has a one-
dimensional normally elliptic center manifold given by (u1, v1, ε1) = (0, 0, ε1).

We focus on p+ and N+
1 for the heteroclinic here. By standard center manifold theory, N+

1 is tangent
at p+ to the center eigendirection spanned by (0,−1, 2). Asymptotically, it is represented by

u1 = 1− ε21
8
− 73

128
ε41 +O(ε61)

v1 = −ε1
2
− 5

16
ε31 −

803

256
ε51 +O(ε71).(5.20)

This follows from applying the invariance condition, and we recall that all center manifolds in the family
have the same expansion in powers of small ε1. See Figure 9.

Exit Chart K3. The phase portrait in K3 near r = 0 can be derived in a similar way. The governing
equations are

u′3 = v3 −
1

2
ε3u3(1− r4

3)(5.21)

v′3 = u3 + u3
3 − ε3v3(1− r4

3)(5.22)

ε′3 = −3

2
ε23(1− r4

3)(5.23)

r′3 =
1

2
r3ε3(1− r4

3).(5.24)

This system has a curve of equilibria S0
0 = {(0, 0, 0, r3), r3 ≥ 0}, each of which have strong stable/unstable

directions in the (u3, v3) plane. S0
0 also lies inside a two-dimensional center manifold Mc,0 tangent to the

(ε3, r3) plane. Here one such center manifold is given by the plane {(0, 0, ε3, r3) : ε3, r3 ≥ 0}. This manifold
is once again normally hyperbolic with one-dimensional strong stable and unstable fibers. The union of stable
fibers gives a local description of a center-stable manifold Mcs,0 which corresponds locally to W cs(0, 0,−1).
Similarly to K1, the r3 = 0 plane is invariant with the reduced system

u′3 = v3 −
1

2
ε3u3

v′3 = u3 + u3
3 − ε3v3

ε′3 = −3

2
ε23

r′3 = 0.

Here we find the trivial center manifold N0
3 given by (0, 0, ε3) for ε3 ≥ 0.

Hence, by tracking manifolds across the rescaling chart, we wish show that the three-dimensional man-
ifolds Mcs,0 and Mcu,+ have a two-dimensional intersection, with one direction corresponding to variation
in ε and the other the direction of the flow.

Rescaling Chart K2. Finally, we work in the rescaling chart K2 to identify the geometrically unique
solution that represents the desired heteroclinic in the blown-up vector field. In K2, system (5.6)-(5.9)
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becomes

u′2 = v2(5.25)

v′2 = −µ2u2 + u3
2(5.26)

µ′2 = −1 + r4
2µ

2
2(5.27)

r′2 = 0.(5.28)

Here, the prime denotes the derivative with respect to the new time variable ξ2 = r2ξ. We focus on the
dynamics of this system on the invariant set {r2 = 0}, where the system reduces to

u′2 = v2(5.29)

v′2 = −µ2u2 + u3
2(5.30)

µ′2 = −1(5.31)

r′2 = 0.(5.32)

Then, by converting the (u2, v2) subsystem into a second-order scalar equation, scaling u2 =
√

2ũ2, and
recalling that µξ = −ε(1 − µ2) so that µ2 = −ξ2 on {r2 = 0}, we find that the governing equation on
{r2 = 0} is

(5.33) ũ′′2 = ξ2ũ2 + 2ũ3
2.

This is precisely the second Painlevé equation (PII), recall (1.17). Note that the scaling used here to derive
ũ2(ξ2) is the same as that used in Section 1.3 for ũ(η) and w(η) since r2 = ε1/3 in K2.

Now, as previewed above while deriving the formal asymptotics, the key solution of (5.33) that is of
interest here is the Hastings and McLeod solution, wHM of (1.17), which we denote here by ũ∗2(ξ2). It is the
unique solution which satisfies the asymptotic boundary conditions

ũ∗2(ξ2) ∼
√
−ξ2/2, ξ2 → −∞, ũ∗2(ξ2) ∼ Ai(ξ2), ξ2 → +∞,

and which decays strictly monotonically. Finally, scaling back to u2, this yields the unique monotonically
decaying solution u∗2(ξ2) of (5.29)-(5.32) with the asymptotics

u∗2(ξ2) ∼
√
−ξ2 =

√
µ2, ξ2 → −∞,(5.34)

u∗2(ξ2) ∼
√

2Ai(ξ2), ξ2 → +∞.(5.35)

6. Singular heteroclinic connection on the sphere, transversality. On the blow-up sphere,
{r = 0}, the Hastings-Mcleod solution u∗2 represents a heteroclinic solution connecting the equilibrium
p+ on the µ̄ > 0 hemisphere to the equilibrium p0 in the µ̄ < 0 hemisphere. Below, we find that in the charts
K1 and K3 this unique connecting orbit gives a 1-D center manifold in the rj = 0 invariant subspaces in chart
Kj for both j = 1, 3. We thus use this heteroclinic orbit to transport the center unstable manifold Mcu,+

from K1 across the sphere to locate an intersection with the center-stable manifoldMcs,0 in K3. To address
the non-uniqueness of the center manifolds in K1 and K3, we first construct an intersection between the local
3-D center unstable manifold of the equilibrium p+ which contains the 1-D center manifold κ−1

21 u
∗
2 in K1 and

the local 3-D center stable manifold of the equilibrium p0 which contains the 1-D center manifold κ23u
∗
2. We

do this in order to flow these invariant manifolds globally across K2 using the variational dynamics around
u∗2. We then use inclination properties of the flow in each chart to conclude the same transversality and
intersection properties for the center unstable/stable manifolds Mcu,+, Mcs,0.

Using the inverse coordinate change κ−1
12 : K2 → K1, given by u1 = u2µ

−1/2
2 , v1 = v2µ

−1
2 , ε1 = µ

−3/2
2 ,

and r1 = r2µ
1/2
2 , we can translate the asymptotics of u∗2 into the variables of chart K1. We find that,

when flowed back through the entry chart coordinates K1, the solution κ−1
12 u

∗
2(ξ2) asymptotically approaches

p+ = (1, 0, 0, 0) as ξ1 → −∞, and it lies on a center manifold, N+
1 , of this equilibrium. In fact, the higher

order terms in the asymptotic expansion of the Hastings-McLeod solution as ξ2 → −∞, given by

u∗2(ξ2) =
√
−ξ2

(
1 +

1

8ξ3
2

− 73

128ξ6
2

+
10219

1024ξ9
2

+O(ξ−12
2 )

)
,(6.1)
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(see for example [7, 1], and also [4] for the full trans-series asymptotics) also agree with the higher-order
terms in the expansion of N+

1 ; recall (5.20).
In a similar manner, using the coordinate change κ23, we can translate the asymptotics of u∗2 as ξ2 → +∞,

given in (5.35), into the K3 variables. We find the set κ23u
∗
2 is a 1-D center manifold of the equilibrium p0

in the {r3 = 0} invariant subspace. Indeed, using the coordinate transform ξ2 = −µ2 = (ε
2/3
3 ) the leading

order expansion for the Airy functions

Ai(ξ) =
e−

2
3 ξ

3/2

2
√
πξ1/4

(
1 +O(ξ−3/2)

)
,(6.2)

Ai′(ξ) = −ξ
1/4e−

2
3 ξ

3/2

2
√
π

(
1 +O(ξ−3/2)

)
,(6.3)

we have the following asymptotic description of the trajectory in K3

u3 =
exp(− 2

3ε
−1
3 )

√
2π

(
ε
1/2
3 +O(ε

3/2
3 )

)
,(6.4)

v3 = −
√

2 exp(− 2
3ε
−1
3 )

√
2π

(
ε
1/2
3 +O(ε

3/2
3 )

)
.(6.5)

Thus, this trajectory approaches p0 tangentially along the center direction formed by the ε3-axis.
As described above, the equilibria p+ and p0 each have 1-D strong stable and strong unstable subspaces,

along with 2-D center spaces. We let W cu
1 (p+) denote the 3-D local center-unstable manifold of p+ in K1

which contains κ−1
12 u

∗
2 and let W cs

3 (p0) be the 3-D local center-stable manifold of p0 in K3 which contains
κ23u

∗
2. Furthermore, we let W cu

2 (p+) and W cs
2 (p0) denote the above manifolds in the K2 coordinates. These

manifolds can be continued along a neighborhood of the connecting solution u∗2 using the flow of the K2

dynamics.

μ u,v

�

�=0

S0
+

S0
0

S0
-

Fig. 9. Schematic depiction of 4-D blown-up phase space near the blow-up sphere S3 (light blue) in the coordinates (5.10).
The singular heteroclinic u∗2 on S3 connecting p+ in chart K1 to p0 in chart K3 is depicted in green. Near the equilibria

p+ this curve also gives the center manifold N+
1 described in (5.20). Critical equilibria curves S±0 , S

0
0 for r ≥ 0 lying inside

the ε̄ = 0 plane (grey) are given by black lines with dots. The green and orange surfaces respectively denote the 2-D center
manifoldsMc,+ andMc,0 described in Section 5, and the double-arrowed green and red curves denote 1-D strong unstable and
stable fibers. The desired intersection is given for 0 < ε� 1 by the intersection of the union of Mc,+ and its strong unstable
fibers with Mc,0 and its strong stable fibers.

We wish to show that the invariant manifolds W cu
1 (p+) and W cs

3 (p0), globally continued across the sphere
intersect transversely with two dimensional intersection containing u∗2. To do this, we track them both in the
rescaling chart K2 in a neighborhood of u∗2 using the associated variational equation. In particular, letting
U∗2 = (u∗2, v

∗
2 , µ
∗
2, 0)T , and F (U) denote the 4-D vector-field defined in (5.25) - (5.28), we insert the solution
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decomposition U = U∗2 +W, W = (w1, w2, w3, w4)T ∈ R4, into the nonlinear system, obtaining

W ′ = A2(ξ2)W +G(ξ2,W ),(6.6)

A2(ξ2) = DF (U∗2 (ξ2)), G(ξ2,W ) = F (U∗2 (ξ2) +W )− F (U∗2 (ξ2))−DF (U∗2 (ξ2))W.

Here A2 takes the 2x2 block form

A2(ξ2) =

(
A2,0(ξ2) A2,1(ξ2)

02 02

)
, A2,0(ξ2) =

(
0 1

ξ2 + 3(u∗2)2 0

)
, A2,1(ξ2) =

(
0 0
−u∗2 0

)
,

where 02 denotes the 2x2 zero matrix.
We study the evolution of the tangent spaces of the desired invariant manifolds along u∗2 using the linear

variational equation

W ′ = A2(ξ2)W.(6.7)

Such tangent spaces can be studied using exponential trichotomies [42] to track not only hyperbolic, but
also center dynamics about u∗2. We readily observe that the w3 and w4 directions, corresponding to the ε2
and r2 directions, are constant. Due to the upper diagonal element coupling w3 to w2, the two-dimensional
subspace {w1 = w2 = 0}, is not invariant. We do note that the w4 direction is invariant, and spans one
dimension of the center bundle. Also, the {w3 = w4 = 0} subspace is invariant and contains the hyperbolic
dynamics on both R±. Using the asymptotics of u∗2, one can obtain the following result

Lemma 6.1. The system (6.7) possesses exponential trichotomies R4 = Es,±(ξ2)⊕Eu,±(ξ2)⊕Ec,±(ξ2) on
both R±, with the one-dimensional subspaces Es/u,±(ξ2) contained in the (w1, w2) subspace and (0, 0, 0, 1)T

contained in the two-dimensional subspace Ec,±(ξ2) for all ξ2.

Proof. On R+, the asymptotics of u∗2 given in (5.35) imply that A2(ξ2) is a localized perturbation of(
A2,Ai(ξ2) 02

02 02

)
, where A2,Ai(ξ2) =

(
0 1
ξ2 0

)
. As the subsystem W ′h = A2,Ai(ξ2)Wh, Wh = (w1, w2)T

is the first-order system formulation of a rescaled Airy equation w′′1 − ξ2w1 = 0, it has an exponential
dichotomy on R+ whose stable and unstable subspaces are spanned by the linearly independent functions
w1 = Ai(ξ2), Bi(ξ2). Standard roughness results [5] then give the existence of an exponential dichotomy on
R+ of the hyperbolic subsystem W ′h = A2,0(ξ2)Wh of (6.7). Thus, since the coupling term w3u

∗
2 vanishes

exponentially fast for ξ2 → +∞, such roughness results also give the existence of an exponential trichotomy
also for the full system.

On R−, the hyperbolic subsystem W ′h = A2,0(ξ2)Wh is an algebraically localized perturbation of another

scaled Airy system. In particular, since u∗2(ξ2) ∼
√
−ξ2, we have A2,0(ξ2) ∼

(
0 1
−2ξ2 0

)
, so that the

corresponding system is approximated by the first order formulation of w′′1 + 2ξ2w1 = 0 for ξ2 < 0, which
has two linearly independent solutions w1 = Ai(−21/3ξ2), Bi(−21/3ξ2) that again give the asymptotic stable
and unstable space respectively. Roughness once again gives the existence of a dichotomy for the hyperbolic
subspaces. The existence of a center subspace is obtained by using the fact that w3 and w4 are constant,
so that the coupling term w3u

∗
2 is bounded, and applying a variation of constants argument to solve the

following initial value problem for each w3-value,

W ′h = A2,0(ξ2)Wh +

(
0

u∗2(ξ2)w3

)
, Wh(0) = 0, ξ2 ∈ R−.

Proposition 6.2. The 1-D unstable and stable subspaces Eu,−
2 (0) and E

s,+
2 (0) intersect transversely.

That is, R2 = Eu,−
2 (0)⊕ Es,+

2 (0).

Proof. It suffices to consider the 2-D hyperbolic subsystem W ′h = A2,0(ξ2)Wh. First, we note this system
is the first-order formulation of the linearized Painlevé-II equation

0 = L0w1 := w′′1 − (ξ2 + 3(u∗2)2)w1.(6.8)

so that exponentially localized eigenfunctions of the latter correspond to solutions of the former lying in
the intersection Eu,−

2 (ξ2) ∩ Es,+
2 (ξ2). Here L0 is a L2 self-adjoint operator, with closed densely-defined
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domain. This operator takes the form of the often-studied Schrödinger operator ∂2
ξ2

+ V (ξ2) with potential

V (ξ2) = −(ξ2+3(u∗2)2). Since the potential satisfies |V (ξ2)| → +∞ as |ξ2| → +∞, standard results [36, Thm.
XIII.47] give that L0 has no essential spectrum and the discrete spectrum {λj} satisfies λ0 ≥ λ1 ≥ λ2 ≥ ...
with λj → −∞. Such results also give for such operators that if V (ξ2) < 0, the “ground-state“ eigenfunction
φ0 of the eigenvalue is strictly positive φ0 > 0. The asymptotics of u∗2 as |ξ2| → ∞ imply that if our potential
has V (ξ2) > 0 at some point then it has V (ξ2) > 0 at most on bounded interval in R− and hence, since u∗2 is
smooth, that m = maxξ2 V (ξ2) is finite. Hence, the potential of the shifted operator L0 − (m+ δ), for δ > 0
small, is strictly negative. Thus, the ground state eigenfunction is strictly positive.

Now, to obtain a contradiction, assume that the ground-state eigenvalue has λ0 ≥ 0. Then, differentiating
the Painlevé-II equation u′′2 + (−ξ2)u2 − u3

2 = 0 in ξ2, we obtain that

L0∂ξu
∗
2 = u∗2.

Also, we recall that ∂ξu
∗
2 < 0. We then calculate

λ0 〈φ0, ∂ξu
∗
2〉L2 = 〈φ0, L0∂ξu

∗
2〉L2 = 〈φ0, u

∗
2〉L2 > 0,(6.9)

which is a contradiction because ∂ξu
∗
2 · φ0 < 0 so that 〈φ0, ∂ξu

∗
2〉L2 < 0. Hence we have that λ0 < 0 and

therefore that the hyperbolic subsystem W ′h = A2,0(ξ2)Wh has no exponentially localized solution and hence
the two subspaces in question must intersect trivially.

Remark 6.3. We also note that Appendix A gives a rigorous proof of the negativity of the potential,
V (ξ2) = −(ξ2+3(u∗2)2) < 0, for all ξ2. This implies that the shift of the operator and results from Schrödinger
operators is not needed above. One actually need only study the numerical range λ0‖φ0‖2L2 = 〈L0φ0, φ0〉L2 =
−
∫
R

(∂ξφ0)2dξ +
∫
R
V (ξ)φ2

0dξ < 0 to infer the negativity of the ground-state eigenvalue.

Given the results of Lemma 6.1 and Proposition 6.2 about the linear dynamics around u∗2, we then can
conclude the desired intersection properties of the center-unstable and center-stable manifolds around u∗2.

Proposition 6.4. In a tubular neighborhood of u∗2, the invariant manifolds W cu
1 (p+) and W cs

3 (p0) in-
tersect transversely with two dimensional intersection containing u∗2.

Proof. First, we observe that the variational equation (6.6) and the exponential trichotomies on R± can
be used to construct and continue the manifolds W cu

1 (p+) and W cs,
3 (p0) in a neighborhood of u∗2 for all R+

and R− respectively. Furthermore, the tangent spaces of these manifolds along u∗2 are given by the three-
dimensional spaces Ecu,−

2 (ξ2) := Eu,−
2 (ξ2) ⊕ Ec,−2 (ξ2) and Ecs,+

2 (ξ2) := Es,+
2 (ξ2) ⊕ Ec,+2 (ξ2). Restricting to

a three-dimensional transverse section Σ̃2 = {µ2 = 0}, we wish to construct a 1-D family of intersections in
Σ̃2 by writing the invariant manifolds locally as graphs over the relevant tangent bundles and constructing
a set of matching equations.

In more detail, the transversality given in Proposition 6.2 gives a coordinate basis of Σ̃2 as Σ̃2 =
Es,+

2 (0)⊕Eu,−
2 (0)⊕span{e4}, where e4 points in one of the center directions, while the other center direction

points along the flow, transverse to Σ̃2. We let (ws, wu, w4) denote the corresponding coordinates and also
note that as these coordinates arise from the nonlinear variation equation, we have that u∗2(0)∩Σ̃ corresponds
to (ws, wu, w4) = 0. In these coordinates, we can write the invariant manifolds as graphs

W cu
1 (p+) ∩ Σ̃2 = {(h−(wu, w4), wu, w4) : |wu|, |w4| ≤ δ}, h− : R2 → R,(6.10)

W cs
3 (p0) ∩ Σ̃2 = {(ws, h+(ws, w4), w4) : |ws|, |w4| ≤ δ}, h+ : R2 → R(6.11)

for some 0 < δ � 1, for smooth functions h± with tangency conditions h−(0, 0) = Dwu,w4
h−(0, 0) = 0, and

h+(0, 0) = Dws,w4
h+(0, 0) = 0. Intersections of the two invariant manifolds can then be obtained via the

following matching equations

h−(wu, w4) = ws,(6.12)

wu = h+(ws, w4).(6.13)

Note we have equated the w4 component of each graph description. Rearranging these equations, inter-
sections are then given as zeros of the following set of equations H(ws, wu;w4) := (ws − h−(wu, w4), wu −
h+(ws, w4))T . The properties of the graphs then imply

H(0, 0; 0) = (0, 0), Dws,wuH(0, 0; 0) = I2,
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so that, by the Implicit Function theorem, one can solve for (ws, wu) as a function of w4 near (0, 0, 0), giving
a one-parameter family of solutions parametrized by the w4 variable, that is r2, which corresponds to ε̄.

Having constructed the heteroclinic between equilibria on the singular sphere, we now use inclination
lemmas to also conclude an intersection between the desired invariant manifolds Mcu,+, Mcs,0. We state
the argument in detail for the dynamics near K1, and outline the argument for K3 as it follows in a similar
manner.

7. Inclination properties and completion of the proof of Theorem 1.2.

7.1. Inclination properties in chart K1.
Straightening the foliations. We wish to track howMcu,+ passes through a neighborhood of the equilib-

rium p+. We note that by the properties of the linearization about S+
0 , the manifolds Mcu,+ and W cu

1 (p+)
are both tangent to the collection of center-unstable eigenspaces of S+

0 . While they may not coincide due to
the non-uniqueness of center manifolds, we find that they leave a neighborhood of p+ exponentially close to
each other.

As the vector-field in K1 coordinates is Cs smooth for all s ∈ N, the local center-stable and center-
unstable manifolds possess the same regularity properties. Hence, classic results [8] give that there exists
a Cs−2 change of coordinates to (ws, wu;wc,1, wc,2)T , with 0 ∈ R4 corresponding to p+, which flattens
the center manifold of p+ along with its strong-stable and unstable foliations. For simplicity, we let wc =
(wc,1, wc,2)T . In such coordinates, the system takes the form

w′s = λsws + gs(ws, wu;wc)ws,(7.1)

w′u = λuwu + gu(ws, wu;wc)wu,(7.2)

w′c = hc(wc) + gc(ws, wu;wc),(7.3)

where λu/s = ±
√

2, hc : R2 → R2 gives the vector-field on the 2-D center manifoldMc, and the nonlinearities
satisfy

Dgs(0, 0; 0) = 0 = Dgu(0, 0; 0), gc(0, wu;wc) = gc(ws, 0;wc) = 0.(7.4)

We remark that the coordinates wj used here are different than those used in the proof of Proposition 6.4.
Hence the center stable and unstable manifolds are given as the invariant foliations of straight fibers

W cu
1 (p+) =

⋃
|wc,0|≤δ

{wc = wc,0, ws = 0, |wu| ≤ δ}, W cs
1 (p+) =

⋃
|wc,0|≤δ

{wc = wc,0, wu = 0, |ws| ≤ δ}.

We then define in and out sections, transverse to the flow of the system, which track how Mcu,+ enters
and leaves a neighborhood of p+ locally near the sphere. We set,

Σin
1 = {(ws, wu, wc,1, ρ) : |ws| ≤ α, |wu| ≤ β, 0 ≤ wc,1 ≤ δ},

Σout
1 = {(ws, wu,∆, wc,2) : |ws| ≤ α̃, |wu| ≤ β̃, 0 ≤ wc,2 ≤ ρ̃},

for some small positive constants α, β, δ, ρ,∆, α̃, β̃, ρ̃.
Dynamics on the center-manifold. We find that the vector-field hc is unchanged in these straightened

coordinates and the dynamics are governed by

w′c,1 =
3w2

c,1

2
(1− w4

c,2),(7.5)

w′c,2 = −wc,1wc,2
2

(1− w4
c,2).(7.6)

Using a change of coordinates ′ = ˙ (1− w4
c,2)−1, which preserves the direction of the flow for small enough

values of wc,2, one can obtain the partially decoupled system

ẇc,1 =
3w2

c,1

2
,(7.7)

ẇc,2 = −wc,1wc,2
2

,(7.8)
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where · denotes differentiation with respect to the new variable ξ̃2. This system can be explicitly solved to
find that the solution with initial data wc(0) = (ε0, ρ), 0 < ε0 < ∆ lying in the section Σin

1 has the form

(wc,1, wc,2)(ξ̃2) =

(
1

ε−1
0 − 3

2 ξ̃2
, ρ(1− 3

2
ε0ξ̃2)1/3

)
,

and thus intersects the out section Σout
1 where wc,1(ξ̃2,out) = ∆ at the time ξ̃2,out = 2

3 (ε−1
0 −∆−1). We also

note that the corresponding wc,2-component of the solution satisfies

wc,2(ξ̃2,out) = ρε
1/3
0 ∆−1/3.(7.9)

Changing coordinates back to ξ2-time, we obtain the transition time as

ξ2,out =
2

3
(ε−1

0 −∆−1) (1−O(ρ)) .

Furthermore, we find that wc,1 blows up in finite time at ξ2 = 2/(3ε0) while all initial conditions with
wc,1 > 0 satisfy limξ2→2/(3ε0) wc,2(ξ2) = 0. Thus, we can define a transition map Π1 : Σin1 → Σout1 for
all points with wc,1 6= 0, for constants α, β, ρ chosen suitably. (In particular, we require wc,2(ξ2,out) ≈
ρ(ε0∆−1)1/3 < ρ̃, ε0 < ∆, and β sufficiently small so that |wu(ξ2,out)| ≤ β̃.)

Next we wish to determine howMcu,+ intersects Σout1 . Since,Mcu,+ is tangent to {ws = 0} along S+
0 , it

can be written as a graph over the center-unstable space. In particular, the intersection with the in-section
is given as

Σin1 ∩Mcu,+ = {(hincu(wu, wc,1, ρ), wu, wc,1, ρ) : |wu| ≤ β, 0 ≤ wc,1 ≤ δ},(7.10)

for a Cr smooth function with hincu(0, 0, ρ) = 0, ∂wuh
in
cu(0, 0, ρ) = ∂wc,1h

in
cu(0, 0, ρ) = 0.. The Sil’nikov coor-

dinates then allow one to readily track such initial conditions forward to Σout1 using the straight foliation of
the center manifold and an inclination result. In particular we find that Π1 maps Σin1 ∩Mcu,+ onto a set
which is exponentially close to W cu

1 (p+) = {ws = 0}.
Proposition 7.1. For 0 < δ < ∆ and ∆, β̃, ρ̃ > 0 sufficiently small, there exists a C > 0, such that the

image of Σin1 ∩Mcu,+ under the transition map Π1 in Σout1 can be written as a graph

Π1(Σin1 ∩Mcu,+) = {(wouts , woutu ,∆, woutc,2 ) : wouts = houtcu (woutu , woutc,2 ), 0 < woutc,2 < ρ̃, |woutu | < β̃}

with houtcu : R2 → R Cr-smooth, satisfying

(7.11) |hcu(woutu , woutc,2 )| ≤ Ce
2λs
3∆ ((ρ/woutc,2 )3−1), 0 < woutc,2 < ρ

uniformly for |woutu | < β̃.

Proof. We use a Sil’nikov boundary value formulation to write the ws-coordinate of Π1(Σin1 ∩Mcu,+)
as a graph over the woutu and woutc,2 coordinates. In other words, we can write solutions with initial data in

Σin1 ∩Mcu,+ solely in terms of the Σout1 data.
Using the straightened foliations of the strong stable and unstable dynamics, the results of [8] imply there

exists a unique solution (ws, wu, wc,1, wc,2)(ξ;wins , w
out
u , winc,1, ρ) of the Sil’nikov boundary value problem with

boundary data wc(0) = (winc,1, ρ), ws(0) = wins , wu(ξ2,out) = woutu for |winc,1| ≤ δ, |wins | ≤ α, and |woutu | ≤ β̃.
Lemma 3.1 of [8] also gives that there exists exponential expansions of the solution components. In more
detail, if w0

c (ξ) denotes the solution on the center manifold with initial condition w0
c (0) = wc(0) = (winc,1, ρ),

then we have

wc(ξ) = w0
c (ξ) +R(ξ, ξ2,out, w

in
s , w

out
u , winc,1, ρ)(7.12)

for some R2 valued Cr−2-function with R(0, ξ2,out, w
in
s , w

out
u , winc,1, ρ) = 0. This perturbation, as well as the

hyperbolic parts of the solution satisfy the following estimates for some C > 0 independent of ξ2,out and the
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boundary data,

|ws(ξ)| ≤ Ceλsξ,(7.13)

|wu(ξ)| ≤ Ceλu(ξ−ξ2,out)(7.14)

|R(ξ)| ≤ Ceλsξ+λu(ξ−ξ2,out).(7.15)

With these general estimates, for each pair (woutu , winc,1), we evaluate the wu-component of the Sil’nikov

solution at ξ = 0 and set wins = hincu(wu(0);winc,1, ρ) where hincu is the graph for the center-unstable manifold
defined in (7.10) above. Furthermore, we also use

woutc,2 = wc,2(ξ2,out) = ρ(winc,1/∆)1/3 · (1 +O(ρ))

given above to write winc,1 in terms of woutc,2 , obtaining winc,1 = ∆(woutc,2 /ρ)3 · (1 +O(ρ)). The graph houtcu is then
given as the function

houtcu (woutu , woutc,2 ) := ws(ξ2,out;w
in
s , w

out
u , winc,1, ρ),

with the aforementioned substitutions for wins and winc,1. The estimates on houtcu then follow from using the
substitutions and the exponential estimate on ws(ξ) above as well as the expansion,

ξ2,out =
2

3
((winc,1)−1 −∆−1)(1 +O(ρ)) =

2

3∆

(
(ρ/wc,2)3 − 1

)
(1 +O(ρ)).

7.2. Inclination properties on chart K3. One can also show that W cs
3 (p0) is exponentially close to

Mcs,0 in a neighborhood of p0 in the K3 chart. The result follows in the same way as done in K1 but one
reverses time, flowing backwards from the “out” chart to the “in” chart. To this end one can once again
change to coordinates (ws, wu, wc,1, wc,2) which straighten the strong fibers so that W cs

3 (p0) is locally given
by {wu = 0}. Roughly wc,1 corresponds to ε3 and wc,2 to r3. We recall that the linearization at p0 has

hyperbolic eigenvalues λ̃u = 1, λ̃s = −1. One then defines in and out sections

Σin3 = {(ws, wu,∆, wc,2) : |ws| ≤ α̃, |wu| ≤ β̃, 0 ≤ wc,2 < ρ},
Σout3 = {(ws, wu, wc,1, ρ) : |ws| ≤ α, |wu| ≤ β, 0 ≤ wc,2 < δ},

along with a transition map Π3 : Σout3 → Σin3 formed by the time-reversed flow. Using the center manifold
dynamics given by

w′c,1 = −
3w2

c,1

2
(1− w4

c,2),(7.16)

w′c,2 =
wc,1wc,2

2
(1− w4

c,2),(7.17)

and a Sil’nikov boundary value problem, we then have the following inclination result.

Proposition 7.2. For 0 < δ < ∆ and ∆, β̃, ρ > 0 sufficiently small, there exists a C > 0, such that the
intersection of the image of Σout3 ∩Mcs,0 under the transition map Π3 in Σin3 can be written as a graph

Π3(Σout3 ∩Mcs,0) = {(wins , winu ,∆, winc,2) : winu = hincs (wins , w
in
c,2), 0 < winc,2 < ρ, |wins | < α̃},

with hincs : R2 → R a Cr-smooth function satisfying

(7.18) |hcs(w
in
s , w

in
c,2)| ≤ Ce

2λ̃s
3∆ ((ρ/winc,2)3−1), 0 < winc,2 < ρ,

uniformly for |wins | < β̃.
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7.3. Tracking across the re-scaling chart and completion of proof of Theorem 1.2. To com-
plete the proof, one translates the intersections Σout1 ∩Mcu,+ and Σin3 ∩Mcs,0 into the chart K2 using κ12

and κ−1
23 respectively, and then flows them forward and backward respectively to construct an intersection

in the section Σ̃2 = {µ2 = 0}. In short, the existence of a 2-D intersection follows from the exponential
closeness of Σout1 ∩Mcu,+ to Σout1 ∩W cu

1 (p+) and Σin3 ∩Mcs,0 to Σin3 ∩W cs
3 (p0), and the inclination properties

about the transverse heteroclinic u∗2 ∈W cu
1 (p+) ∩W cs

3 (p0) in K2.
For (u1, v1, ε1, r1) ∈ Σout1 , recall we have ε1 = ∆ and thus

(u2, v2, µ2, r2) = κ12(u1, v1,∆, r1) = (∆−1/3u1,∆
−2/3v1,∆

−2/3,∆1/3r1).

We then define the entry section in K2 as Σin2 = κ12Σout1 = {µ2 = ∆−2/3} and set ξ2,in = −∆
−2/3
1 so that

u∗2(ξ2,in) ∈ Σin2 . For (u3, v3, ε3, r1) ∈ Σin3 we similarly have

(u2, v2, µ2, r2) = κ−1
23 (u3, v3,∆, r3) = (∆−1/3u3,∆

−2/3v3,−∆−2/3,∆1/3r3),

and thus define Σout2 = κ−1
23 Σin3 = {µ2 = −∆−2/3} and ξ2,out = ∆

−2/3
1 so that u∗2(ξ2,out) ∈ Σout2 .

Next, using the structure of κ12 and the result of Proposition 7.1, we have thatMin := κ12(Σout1 ∩Mcu,+)
is O(∆−2/3e−C/∆) away from κ12(Σout1 ∩ W cu

1 (p+) for some constant C > 0 for ∆ sufficiently small and
r1 < ρ/2. Thus, we observe that Min is a 2-D manifold in Σin2 which intersects the linear stable bundle
Es,−(ξ2,in) transversely. Letting Φξ2 denote the flow of (5.25) - (5.28) in K2, the hyperbolic inclination
properties about u∗2 then imply that Φξ2(Min) exponentially converges onto W cu

1 (p+) as ξ2 increases and
can be written as a graph over the center-unstable bundle Ecu,−

2 (ξ2). Using the monotonicity properties of
the µ2 flow for 0 ≤ r1 � 1, the transition map Π2,in : Σin2 → Σ̃2 defined by the flow Φξ2 is well-defined, with
time of flight ξ2 = −∆−2/3 + O(r2). Therefore we conclude that Π2,inMin can be written as a graph over

Ecu,−(0) and is exponentially close to Σ̃2 ∩W cu
1 (p+) in a neighborhood of u∗2(0).

In a similar manner, Proposition 7.2, gives that Mout := κ−1
23 (Σin3 ∩Mcs,0) is O(∆−2/3e−C/∆) away

from κ−1
23 (Σin3 ∩W cs

3 (p0)) for r3 < ρ/2. Defining Π2,out : Σout2 → Σ̃2 by using the backwards flow Φξ2 , ξ2 <
0, the inclination properties about u∗2 imply that Π2,outMout can be written as a graph over Ecs,+(0)

and is exponentially close to Σ̃2 ∩ W cs
3 (p0). Then using the transversality properties of the intersection

W cu
1 (p+) ∩W cs

3 (p0) we conclude the existence of the desired intersection, completing the existence result of
Theorem 1.2.

Estimate (1.25) is obtained by putting the above results for charts K1-K3 together and translating
back to the original coordinates. Here

√
2wHM is given by u∗2 in the K2 coordinates. We see that the

heteroclinic, formed by u∗2, obtained in the singular limit of the above geometric desingularization analysis
is the leading-order approximation of the desired front solution in the region |µ| . ρε2/3, where ρ > 0 is a
small, ε independent constant. Moreover, given that µ ∼ −εξ in a neighborhood of the origin, the leading
order asymptotics hold for |ξ| ≤ ρε−1/3. Unwinding the scalings from the blow-up coordinates, the desired
heteroclinic front solution asymptotically satisfies

|u∗(ξ)− ε1/3u∗2(ε1/3ξ)| ≤ ρε2/3, |ξ| ≤ ρε−1/3.(7.19)

8. Discussion and future directions. To conclude, we discuss several immediate consequences of
our results and highlight several avenues for future research. We expect our c > 0 results and the phe-
nomenological mechanisms studied in this work to govern front dynamics for any scalar reaction-diffusion
equation

(8.1) ut = uxx + f(x− ct, u), u(x, t) ∈ R,

where f is smooth with slowly varying heterogeneity which moderates the stability of a homogeneous equi-
librium state and undergoes a bifurcation to a stable equilibrium state as ξ moves from +∞ to −∞. For
example, we expect a result similar to Theorem 1.1 to hold for (8.1) for a slowly-varying Fisher-KPP type
nonlinearity f(ξ, u) = µ(ξ)u − u2 with µ defined as above. Furthermore, we expect the underlying mecha-
nisms studied here to govern the formation of front solutions in slowly-varying super-critical pattern-forming
equations, such as the real and complex Ginzburg-Landau equations, the Swift-Hohenberg equation, and
many relevant reaction-diffusion equations.
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This work can be viewed as a new contribution to the nascent body of research studying dynamic
bifurcation in spatially extended systems. It points to a new set of problems which are of interest both for
applications and for mathematics. It also provides a novel application-motivated example of how techniques
from geometric singular perturbation theory can be used to uncover and precisely characterize front dynamics
in a slowly-varying environment. From a technical perspective, it also provides a testbed to apply dynamic
bifurcation techniques in a higher-order system with multiple additional hyperbolic directions as well as a
control parameter (in our case c) which governs the specific type of dynamic bifurcation.

8.1. Stability. It is not difficult to see that the solutions constructed in Theorem 1.1 and Theorem
1.2 are asymptotically stable, that is, they attract all nearby initial conditions exponentially in the equation
(1.1), posed in the co-moving frame ζ = −(x− ct),

(8.2) ut = uζζ − cuζ + µu− u3

Given standard results on asymptotic stability in semilinear PDE (see [21, Ch. 5] or [26]), it is sufficient to
show that the spectrum of the linearization at such a solution has strictly negative real part. Note that there
is no spatial translation eigenvalue due to the heterogeneity. We write therefore u∗ for the first component
of Γε, suppressing the dependence on ε and c, and recall that u∗ζ > 0 and µζ > 0. We then need to consider
the spectrum of the linearization

(8.3) L0u := uζζ − cuζ + (µ− 3(u∗)2)u,

considered as a closed and densely defined operator on, say BC0(R). This operator is conjugate to a formally
self-adjoint operator

(8.4) Lcu := (e−cζ/2L0e
cζ/2)u = uζζ + (µ− c2

4
− 3(u∗)2)u,

Indeed, Lc is clearly self-adjoint on L2(R). A quick calculation shows that the essential spectra of L0 and
Lc have strictly negative real part. Moreover, inspecting the decay of eigenfunctions, that is, to solutions
of Lcu = λu with Reλ ≥ 0, one quickly sees that the point spectra of L0 and Lc coincide. Similarly, point
and essential spectra do not depend on the choice BC0 versus L2, so that we restrict ourselves to excluding
eigenvalues λ ≥ 0 to Lc in L2.

To exclude such eigenvalues, we proceed as in Proposition 6.2 above. Assume that there is a maximal
eigenvalue λ0 ≥ 0 with eigenfunction u0(ζ), which then has a sign and we assume u0(ζ) > 0. Next, recall
that u∗ζζ − cu∗ζ + µu∗ − (u∗)3 = 0, so that, by differentiating with respect to ζ, we find

(8.5) L0u
∗
ζ + µζu

∗ = 0,

or

(8.6) Lc
(
e−cζ/2u∗ζ

)
+
(
e−cζ/2µζ

)
u∗ = 0.

One quickly verifies that
(
e−cζ/2u∗ζ

)
is exponentially localized, as is

(
e−cζ/2µζ

)
u∗, and we shall exploit

this property by testing the eigenvalue against these functions. We find from Lcu0 = λu0 after integrating
against e−c/2u∗ζ , that, using first that u∗ζ , u0 > 0, λ0 ≥ 0, self-adjointness of Lc, and (8.6),〈

e−cζ/2u∗ζ ,Lcu0

〉
L2

= λ0

〈
e−cζu∗ζ , u0

〉
L2 ≥ 0,〈

Lc(e−cζ/2u∗ζ), u0

〉
L2
≥ 0,〈

−e−cζ/2µζu
∗, u0

〉
L2
≥ 0,

a contradiction to µζ , u
∗, u0 > 0.

Non-monotone fronts, discussed next, are likely unstable with increasing Morse index. Using Maslov
index arguments, for example, one would seek to establish the additional unstable eigenvalues for each node
created in the solution.
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Remark 8.1. For slowly-ramped fronts in systems without a comparison principle and the monotonicity
properties exploited above, the techniques of [15] should be of use in locating spectrum and proving stability.
In more detail, the front u∗ is exponentially close to the trivial state u = 0 in the O(ε2/3)-wide interval
µ ∈ (µfr, µc). Here, the trivial state is absolutely unstable. Since this region is O(ε−1/3)-wide in the spatial
variable ξ, one expects all but finitely many of the point spectrum of L to lie close to the absolute spectrum of
the trivial state. Following the aforementioned work, one would projectivize the eigenvalue problem Lv = λu
and track the slow winding of the unstable subspace as ξ passes from ξfr to ξc. Since the winding frequency
slows to zero as ξ increases and µ → µ−c , one does not expect intersections to exist for λ ≥ 0, and thus no
unstable eigenvalues associated with the ramp itself.

8.2. Fronts with non-monotonic tails. As briefly mentioned in the introduction, our approach for
dynamic quenching can readily be extended to prove the existence of fronts with oscillatory tails as well as
for fronts with limζ→+∞ u(ζ) = −1. Such fronts arise from the slow attracting manifold Saε on the plane U0,
and its corresponding strong unstable foliation, winding all the way around the cylinder before intersecting
the stable manifold. After Saε passes around the fold point, the z-dynamics in (2.6) cause the manifold to
blow-up to negative infinity in finite time. This corresponds to the trajectory moving to another chart of the
cylinder. Dynamics on this chart can be coordinatized with a blow-up in the v-direction, w = v/u, where
w = 0 roughly corresponds to z =∞. On the invariant cylinder the dynamics are governed by the equation

wζ = 1− cw + (θ + c2/4)w2

and thus consist of constant drift at leading order for w ∼ 0. After tracking the slow manifold through
this chart one would then study the dynamics in the −u blow-up with the coordinate ẑ = −v/u and find
intersections of the unstable manifold with the stable manifold of the u = −1 equilibrium. Further tracking
it around the cylinder back to the original chart one could then find another intersection with the original
stable manifold. We once again remark that one could use a polar coordinate blowup of the dynamics near
(u, v) = (0, 0) without the use of charts. See Figure 10 for a schematic depiction. These dynamics are
similar those found in the work [2] which finds Airy points along the repelling slow manifold of the Fitzhugh-
Nagumo system, where the local linear stability type of the point in the fast subsystem changes from being
an unstable node to an unstable spiral. We expect from Sturm-Liouville theory that fronts with non-trivial
winding around the cylinder, so that u(ζ) is non-monotonic with a finite set of zeros, to be unstable. Thus,
we do not rigorously pursue their existence here.

We do give brief numerical results which indeed indicate the (in)stability of the (non-)monotonic front.
Figure 11 gives numerical simulations of system (1.1) in the co-moving frame ξ = x − ct with speed c and
initial conditions of the form

(8.7) uτ (ξ, 0) =


1, ξ < (c2/4− 0.1)/ε

τ, (c2/4− 0.1)/ε ≤ ξ ≤ (c2/4 + 0.1)/ε

0, ξ > (c2/4 + 0.1)/ε.

Here τ < 0 so that the initial condition is not strictly positive. By varying τ , we find that the non-monotonic
front acts as a saddle-point in time, separating the basin of attraction for two stable monotonic fronts. We
find for more negative τ < 0 values that the solution eventually “sheds” the positive kink and converges to
the negative monotonic front with limξ→−∞ u(ξ) = −1. For less negative τ < 0, the solution converges to
the positive monotonic front with limξ→−∞ u(ξ) = 1. Figure 11 also plots the solution profile u(ξ, t) at the
t value near where these solutions two diverge. We observe a spatial profile with one oscillation, or wind
around the cylinder, before u decays to 0 for ξ > 0.

Interestingly, non-monotonicity can also result from a small bias in the cubic, leading to a Painlevé
II equation with an asymmetric cubic ηw + 2w3 + k for some k > 0. We expect a variety of interesting
applications and more complex results relating to the competition between pulled and pushed fronts, and
refer to [44] for a discussion of applications and analysis of relevant, non-monotone, special solutions in the
stationary case c = 0.

8.3. Fronts for asymptotically small speeds 0 < c � 1. We now discuss front solution behavior
and asymptotics in the limit where the quenching speed c is asymptotically small. First of all, numerical
results in Figure 12 of the difference µfr−µc, show that as c decreases, the ε interval on which the ε2/3-delay
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Fig. 10. Schematic depiction of dynamics near the polar coordinate blow-up of the line (0, 0, µ) into the cylinder {r = 0}
(grey). Colors correspond to objects depicted in previous figures. Winding of the unstable manifold Wu(0, 0,−1), which in
the blow-up coordinates consists of the attractive slow manifold Saε in the cylinder (orange trajectory) and its strong unstable
foliation (orange sheet), allows for additional intersections between the stable manifold W s(1, 0, 1) (green). Red and blue curves
denote the ε = 0 curves of equilibria. Furthermore, this winding allows for connections with the stable manifold W s(−1, 0, 1)
of the other equilibrium, u ≡ 1, at µ = 1 (not depicted).
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Fig. 11. Spacetime diagrams of solutions of (1.1) in the co-moving frame ξ = x − ct with initial condition uτ in (8.7)
for τ = −9.969 × 10−3 (left) and τ = −9.96975 × 10−3 (center). Right: a plot of the solution profile at t = 60.1 with
τ = −9.96975× 10−3, near the saddle time where solutions diverge to either positive or negative monotone fronts; inset gives
a zoom in of the solution tail with one negative minimum. Simulation was done on a domain x ∈ [−1200, 1200] with 2nd-order
centered finite differences for ∂ξξ and one-sided up-winding for ∂ξ in space with Neumann boundary condition on the left and
Dirichlet boundary condition on the right and step-size ∆x = 0.3. Time stepping was done using a 3rd-order semi-implicit
backward differentiation formula with step-size ∆t = 0.3.

is valid shrinks. In other words, we observe that as c decreases, the value of ε0 given in Theorem 1.1 goes
to zero. Indeed for sufficiently small c, the front interface lies ahead of µc so that µfr − µc < 0, at least for
the numerical range of values ε used in computation. Thus the front tail bleeds into the region where µ ≤ 0.
From a PDE perspective this advance of the front tail could be viewed as being caused by the comparatively
large role diffusion plays when the quench is slow moving. Also, we find below that for such small speeds, the
front profile resembles the unique connecting solution of Painlevé’s second equation observed in the c = 0
case discussed in Section 5 above.

To understand this behavior one could alternatively seek to understand the limit c → 0+ for ε fixed
small. Such numerics are also depicted in the right plot of Figure 12. We find, as c decreases the front
follows

√
µ for a larger range of ξ but decays more slowly as ξ increases past 0. Furthermore, we can also

track the change in front behavior by tracking the value u(ξc), where ξc is such that µ(ξc) = µc. This
indicates the size of the front at the leading order take off point. Since there is an additional delay in the
front interface for ε sufficiently small, we expect these values to remain exponentially small. In Figure 13,
we indeed find that the interval of ε values where u is exponentially small decreases as c decreases. In the
limit c = 0, there is no such interval and a linear fit of the log-log data here indicates that u(ξc = 0) scales
like ε1/3.

Further evidence that there is a transition at c ∼ ε1/3 in the dynamics of the fronts comes from some
preliminary analysis. On the one hand, for asymptotically small values of c which satisfy c � ε1/3, it
turns out that the system is again a perturbation of the Painlevé II equation, as is the case for c = 0.
Indeed, for c > 0, one starts with system (5.6)-(5.9) and adds the term −cv to the second component. For
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asymptotically small values c = εσ c̃ where c̃ = O(1) with respect to ε, one may use the same dynamically
rescaled coordinates (5.10) and the same method of geometric desingularization as used above. In particular,
in the rescaling chart K2, one finds the same system (5.25)-(5.28), as in the analysis of the case c = 0, but
now with the term −r3σ−1

2 c̃v2 included in the second component, (5.26). This term is a small perturbation
term for 0 < r2 � 1 as long as σ > 1/3. Hence, for c� ε1/3, the structure of the full system is also that of
a small perturbation of the Painlevé II equation, as above in the analysis for c = 0.

On the other hand, for asymptotically small values of c which satisfy c � ε1/3, preliminary analysis
suggests that one can extend the method of proof of Theorem 1 down to c� ε1/3. For asymptotically small
values of c, the boundary of Ur0 at {z = −c/2} gets close to the axis, and with c � ε1/3, the method of
Sections 2-4 can still be used to show that the invariant manifolds intersect transversely. Moreover, the
terms in the asymptotic expansion (1.14) stay well ordered for c� ε1/3.
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Fig. 12. Left: plots of the numerically measured difference µfr − µc against ε, for a range of c values (given in legend),
curves increase as c increases; Right: Plots of the front profile near µ = 0 for a range of c-values (in legend), curves decrease
as c increases with ε = 0.0025 fixed.
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Linear:  y = 0.3333*x - 0.656

Fig. 13. Left: plot of the values u(ξc) against ε for a range of speeds c. Note the curves from convex to concave as c
decreases; Right: Log-log plot of u(ξc) against ε, showing that the front height becomes exponentially small in ε for moderate
speeds c. Also included is a linear fit of the c = 0 curve (light yellow, with fit equation printed), indicating that u(ξc) scales
like ε1/3 in this case.

8.4. c > 2 and spatially homogeneous slow quenches. As mentioned in the introduction, we
expect no traveling wave solutions to exist for quenching speeds c > 2. In the full dynamics of the PDE
(1.1), since µ approaches 1 as t → +∞ for all points x ∈ R, we expect compactly supported perturbations
to spread with asymptotic speed 2. To characterize this regime, we introduce an altered parameterization of
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the quench

ut = uxx + µ(αx− t)u− u3,(8.8)

µ(η) = − tanh(εη), µ(0) = 0.(8.9)

with a new traveling wave variable η = αx− t. Here the new parameter α ∈ R gives the speed of the moving
quench as 1/α, and thus the range α > 1/2 corresponds to the case c ∈ (0, 2) studied above, while the range
α ∈ (0, 1/2) corresponds to c > 2, and α = 0 to a spatially homogeneous quench which uniformly renders the
trivial state unstable. In the latter two cases, one immediate question of interest is how the front interface
moves and how its speed asymptotically approaches 2. In the α = 0 case, where µ slowly varies from −1
to 1 as time evolves from t = −∞ to t = +∞, uniformly in x, a leading-order heuristic prediction can be
obtained using a simple characteristic argument. The uniform growth of µ causes perturbations of the trivial
state to accelerate their growth as t > 0 increases. Since the growth is slow, one “freezes coefficients” so
that the predicted instantaneous invasion speed at each fixed t > 0 is given as s(t) = 2

√
µ(t). Hence, given

a localized perturbation lying near the origin with support contained in [−x0, x0] for some x0, one predicts
the front location xfr(t) to satisfy the characteristic equation

dxfr

dt
= s(t), xfr(0) = x0,

and hence is given as

(8.10) xfr,pred(t) = x0 +

∫ t

0

2
√
µ(σ)dσ.

For µ(η) = − tanh(εη), or alternatively for a purely linear ramp µ(η) = εη, it is possible to obtain xfr,pred(t)
in closed form. See Figure 14 for a comparison of the numerically measured front location xfr,num and this
prediction. We find, after an initial transient where the front establishes itself, the front location moves
slightly faster than the prediction.

A simple heuristic argument supporting this finding goes as follows. The linear spreading in the station-
ary frame of a perturbation of the trivial state with exponential decay ∼ eνx is determined by a quantity
known as the envelope velocity, defined as senv(ν) = −Reλ(ν)/Re ν, where λ(ν) is a root of the linear dis-

persion relation (1.6) with c = 0. For a given µ and ν ∈ R, we find senv(ν) = −ν
2+µ
ν . The linear spreading

speed discussed is related to the envelope speed through slin = minν∈R senv(ν) = 2
√
µ. In the stationary

frame, the ν < 0 (corresponding to rightward spreading waves) which minimizes the envelope velocity is
given as ν = −√µ. Now let us return back to the slowly-varying quench µ = µ(t). At a given fixed time

t1 > 0, the above prediction for the invasion speed s(t1) = 2
√
µ(t1) would have a front with spatial de-

cay ν(t1) = −
√
µ(t1). Now for a time t2 just after t1, where µ has increased further, the envelope speed

of this tail senv(ν(t1)) is greater than the predicted instantaneous speed for µ(t2). Hence we expect the
front to accelerate faster than predicted in calculation (8.10). We anticipate that one can obtain a more
refined prediction, as well as rigorous existence and asymptotics, by explicitly solving the linearized equation
vt = vxx + µ(t)v to understand spreading asymptotics of exponential tails and then construct fronts using
comparison principle methods.
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Appendix A. The potential is sign definite..
In this appendix, we prove that the potential obtained from linearizing the Painlevé II equation about

the Hastings-McLeod solution is sign definite. This result (see Lemma A.2 below) is not only of use as a
direct way to show in Proposition 6.2 that the ground state is sign definite, as remarked above, but it is also
of independent interest for the Painlevé II equation. Given the independent interest, we prove the result
using the standard form (1.17) of the equation.
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Fig. 14. Direct numerical simulation of (8.8) with ε = 0.005, α = 0; left: Spacetime diagram of the solution with measured
front location xfr,num (green) where u(x, t) = 0.2 and prediction of xfr,pred from (8.10); right: depiction of the difference
between the measured and predicted front location.

Lemma A.1. (Hastings [19]) For the Hastings-McLeod solution, w(η) of the Painlevé II equation w′′ =
ηw + 2w3, one has the following lower bound: w(η = 0) ≥ Ai(0) = 1

32/3Γ( 2
3 )

.

Proof. This lemma and its proof are due to Professor Stuart Hastings [19]. By Theorem 2 of [20], it is

known that limη→∞
w(η)
Ai(η) = 1. So, suppose that w(0) < Ai(0). Then, there is an ηR > 0 at which

(
w
Ai

)′
> 0.

Hence, at ηR, one has w′Ai − Ai′w > 0. Next, observe that
(
w′Ai−Ai′w

)′
(η) = 2(w(η))3Ai(η) > 0 for all

η ≥ 0, which implies that ( w
Ai

)′
=
w′Ai−Ai′w

Ai2
→∞, as η →∞.

This contradicts the asymptotics of w(η). Hence, the supposition that w(0) < Ai(0) is incorrect, and the
lemma is proven.

Lemma A.1 is used as a key step in establishing the following result about the potential V(η) = η +
6(w(η))2, obtained by linearizing the right hand side of the Painlevé II equation about the Hastings-McLeod
solution.

Lemma A.2. The potential V(η) = η + 6(w(η))2 evaluated along the Hastings-McLeod solution w(η) of
the second Painlevé equation w′′ = ηw + 2w3 is strictly positive for all η ∈ R.

Proof. First, for all η ≥ 0, one sees directly that V(η) > 0, since w(η) > 0 for all η by Theorem 1 of [20].
Also, V(η) > 0 for η0 ≤ η < 0, where η0 < 0 is the unique point at which w′′(η) = 0 (recall Theorem 1 of
[20]), since

(
η + 2(w(η))2

)
w(η) = w′′(η) > 0 for all η > η0 and w > 0 for all η.

The difficult part of the proof is to show that V(η) > 0 also for all η < η0. This may be accomplished
as follows. The potential V(η) → ∞ as η → −∞. Hence, there is some ηL < 0 sufficiently negative such
that V(η) > 0 on (−∞, ηL]. Now, on the interval (ηL, η0), we use the coordinate change w(η) =

√
−η/2z(η).

Here, z(η) satisfies d2z
dη2 + 1

η
dz
dη = z

4η2 + ηz(1 − z2), which is equation (2.4) with α = 0 in [20]. It suffices to

show that V, which is now V(η) = (−η)(3z2 − 1), is strictly positive at any local minimum of V on (ηL, η0).

At a local minimum ηm of V, dz
dη (ηm) = 3(z(ηm))2−1

−6ηmz(ηm) . Substituting this into the condition that d2V
dη2 > 0 at a

local minimum, one finds that (z(ηm))2 − 1 > 1
36(z(ηm))4(ηm)3 at any local minimum of V on this interval.

Hence, at a local minimum, the key term in the potential satisfies

3(z(ηm))2 − 1 > 2(z(ηm))2 +
1

36(z(ηm))4(ηm)3
.

Now, the term in the right member is strictly positive as long as w(ηm) =
√
−ηm/2 z(ηm) > (576)−1/6 =

0.34668 . . ., as may be seen by a straightforward calculation. Moreover, w(ηm) > w(0), since dw
dη (η) < 0
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for all η by Theorem 1 of [20], and w(0) > Ai(0) = 1

32/3Γ( 2
3 )

= 0.355028 . . ., by Lemma A.1. Therefore,

3(z(ηm))2− 1 > 0 at any local minimum on (ηL, η0), and hence V(η) > 0 for all η ∈ (ηL, η0). This completes
the proof of the lemma.

The proof of Lemma A.2 involves analysis of local minima of V and relies on Lemma A.1. An alternative
proof of the positivity of the potential V evaluated along the Hastings-McLeod solution w may be obtained
using the method of proof by contradiction, as follows:

Lemma A.3. (Hastings [19]) The Hastings-McLeod solution w(η) of the second Painlevé equation satis-
fies w(η) >

√
−η/6 for η ∈ (−∞, 0].

Proof. For each α ≥ 6, define fα(η) =
√
−η/α on (−∞, 0]. Since w(η) ∼

√
−η/2 as η → −∞, there

exists an ηL < 0 such that f6(η) < w(η) for η ≤ ηL. Moreover, since fα(η) < f6(η) for α > 6 on (−∞, 0),
fα(η) < w(η) on (−∞, ηL] for all α > 6, as well.

Next, since fα → 0 as α → ∞ uniformly on [ηL,∞), there is an αL > 0 such that fα(η) < w(η) on
(−∞, 0] for all α ≥ αL. Hence, if there is a point η at which fα(η) = w(η) for some α ≥ 6, then that point
η must lie in [ηL, 0]. Also, if this is true for some α ≥ 6, then there must exist a greatest such value, call it
α∗. Moreover, any point of intersection of fα∗ with w must be a point of tangency, with fα∗(η) ≤ w(η) on
(−∞, 0], otherwise by continuity α∗ would not be the greatest value.

Now, suppose that η∗ is such a point of tangency between fα∗ and w. At η∗, one has fα∗ = w > 0,
f ′α∗ = w′ < 0, and f ′′α∗ ≤ w′′ (where the sign of w′′ is unknown). Also, one has w′′ = η∗w + 2w3 =
η∗fα∗ + 2f3

α∗ . Then, calculating f ′′α∗ , one obtains −1
4α∗2f3

α∗
≤ η∗fα∗ + 2f3

α∗ . In turn, this implies that

−1
4α∗2 ≤ η∗f4

α∗ + 2f6
α∗ = η3

α∗2

(
1− 2

α∗

)
≤ η3

α∗2

(
1− 2

6

)
< 0. Hence, η∗3 ≥ − 3

8 , and one may bound η∗ from
below as η∗ ≥ −0.73. Thus, for any such α∗ ≥ 6, one finds that w(η∗) = fα∗(η∗) ≤ 0.349. However, this is
a contradiction, since w(η∗) > w(0) ≥ 1

32/3Γ(2/3)
≥ 0.355, by Lemma A.1. Therefore, there cannot be any

such α∗ ≥ 6, and we have f6(η) < w(η) for all η ∈ (−∞, 0]. This completes the proof of the lemma.
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