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Abstract

We examine the effect of a slowly-varying time-dependent parameter on invasion fronts for which an

unstable homogeneous equilibrium is invaded by either another homogeneous state or a spatially periodic

state. We first explain and motivate our approach by studying asymptotically constant invasion fronts in

a scalar FKPP equation with time-dependent parameter which controls the stability of the trivial state.

Following recent works in the area, we use a linearized analysis to derive formal predictions for front

position and leading-edge spatial decay. We then use a comparison principle approach to establish a

rigorous spreading result in the case of an unbounded temporal parameter. We then consider patterned-

invasion in the complex Ginzburg-Landau equation with dynamic bifurcation parameter, a prototype

for slow passage through a spatio-temporal Hopf instability. Linearized analysis once again gives front

position and decay asymptotics, but also the selected spatial wavenumber at the leading edge. We then

use a Burger’s modulation analysis to predict the slowly-varying wavenumber in the wake of the front.

Finally, in both equations, we used the recently developed concept of a space-time memory curve to

characterize delayed invasion in the case where the parameter is initially stable before a subsequent slow

passage through instability and invasion. We also provide preliminary results studying invasion in other

prototypical pattern formation models modified with a dynamic parameter, as well as numerical results

for delayed transition between pushed and pulled fronts in Nagumo’s equation with dynamic parameter.
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1 Introduction

The evolution of coherent structures in the presence of a temporally-dynamic parameter has arisen as

a topic of interest in a variety of physical settings. For example, such problems arise when considering

striped patterns in a growing or evolving medium [33, 49, 37, 34, 23], where the self-similar or apical
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growth of a domain can, via coordinate change, be represented by a spatio-temporal parameter. Such

dynamic parameters also arise in ecological settings, where a model parameter, such as average rainfall,

varies and induces phase slip dynamics and wavenumber jumps in patterns [46]; see also [5] for similar

studies in a complex Ginzburg-Landau equation. Other examples of defect formation and supression occur

in wrinkled elastic membranes [48], as well as in fluid and optical systems [17, 16]. In all of the above

settings, one generally seeks to understand how the range and slope of the parameter ramp impact pattern

characteristics, such as stripe wavenumber and defect distribution.

While much work has been done on purely periodic phases, little work has been done studying how

dynamic parameters interact with pattern-forming fronts which invade an unstable homogeneous state. In

static parameter problems, this is a commonly proposed mechanism for selecting a defect-free patterned

state with one specific wavenumber [50]. Such fronts arise when an unstable equilibrium is perturbed by

compactly supported initial data which grows and spreads, leaving a coherent patterned state in the wake.

In this work, we seek to understand pattern-forming invasion fronts in the presence of a (slowly) evolving

parameter. In particular, we to seek determine how the evolving parameter selects the spatial wavenumber

at the front interface as well as how the bulk wavenumber evolves in its wake.

We remark there has been a variety of works which characterize how spatio-temporal heterogeneities affect

invasion fronts which leave behind a non-patterned, spatially homogeneous state; sometimes referred to

as an asymptotically constant front. This includes non-rigorous work studying front position and tail

asymptotics [39, 49, 1, 19] in a variety of models, and a rich literature rigorously considering them in scalar

reaction diffusion equations of the form

ut = a(x, t)uxx + f(u, x, t). (1.1)

Under a variety of assumptions - say for example a = 1 and f = f(u, t) bounded in t for u values in

between the two asymptotic states of the front - these works define and characterize the concept of a

generalized transition wave, a front-like solution (with certain spatial asymptotics) defined for all t ∈ R,
with different asymptotic speeds at t = ±∞. Such results, in general, rigorously establish front existence,

selection and convergence, and invasion properties for various types of nonlinearities and heterogeneities

[43, 11, 13, 44, 12, 41, 42, 40, 45],

Overview of our results In this work, we assume a slowly-varying, and unbounded, temporal parameter

ramp,

µ(t) = ϵt+ µ0, (1.2)

and study free invasion fronts arising from localized or compactly supported initial conditions, first in the

Fisher-KPP (FKPP) equation (1.3), and second in the pattern-forming complex Ginzburg-Landau (CGL)

equation (1.4), listed below.

We use the former to explain phenomenon, explain our approach, and introduce ideas. The equation takes

the form of a scalar reaction-diffusion equation

ut = uxx + µ(t)f(u), f(u) = u− u2. (1.3)

This equation produces accelerating fronts which are asymptotically constant in space and connect u = 1

to u = 0 with an increasingly steep interface; see Figure 2.1 and 3.1. We use a linear analysis to obtain

accurate leading predictions for spreading properties, such as front position and spatial asymptotics of the

front profile. We mention here that µ(t) was introduced outside of the nonlinearity in FKPP (equation

(1.3)) to keep solutions with small positive data bounded for all time t > 0, simplifying our rigorous result
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in Section 5. This also connects our study to examples given in previous works, such as [41]. We expect

similar results to hold for a heterogeneity “inside” the nonlinearity, such as µu − u2. Here, fronts would

connect u = 0 to a slowly-varying stable state u ≈ √
µ in their wake.

To obtain more precise predictions for the front interface, we employ the recently developed space-time

memory curve concept used to characterize delayed onset of Hopf instability in spatially extended systems

[31, 21, 22]. In our setting, such delayed bifurcation and front invasion is observed for 0 < ϵ≪ 1 and µ0 < 0.

Here, a compactly supported initial condition initially decays pointwise while diffusively spreading, as long

as µ(t) < 0. Then, as opposed to the spatially uncoupled system where the onset of the large amplitude

state is symmetric and occurs at time t = −2µ0/ϵ, diffusive coupling leads to onset values of µ which are

spatially-dependent µ = µmc(x). Our phenomological results on the delayed invasion of the nonlinear front

complement the recent works [30] which develops geometric blow up and self-similar variable techniques

to track solutions with spatially-localized initial data in a neighborhood of (u, µ) = (0, 0), showing that

they stay near the spatially homogeneous solutions of the associated slowly-varying reaction kinetics ODE

u′ = µf(u); see also [15].

As our specific setting (i.e. where µ is unbounded and negative for t < 0) has not, to our knowledge, been

given a rigorous treatment in the aforementioned rigorous results, we also give a rigorous proof in Theorem

1 below which establishes spreading properties from (one-sided) compactly supported initial data in the

time-heterogeneous Fisher-KPP equation (1.3). It confirms that the asymptotic front position is given at

leading-order by the linear prediction x =
(
4t
∫ t
0 µ(s)ds

)1/2
for t sufficiently large. We believe such a result,

while expected given the previous literature, is new due to the unboundedness of the parameter µ(t). We

use comparison principle techniques and develop a novel sub-solution which allows us to characterize the

accelerating front and confirm the predicted front position from the aforementioned linear analysis.

To study patterned fronts, we consider the complex Ginzburg-Landau equation with super-critical nonlin-

earity,

At = (1 + iα)Axx + µ(t)A− (1 + iγ)A|A|2, (1.4)

a prototypical model for oscillatory instability and Hopf bifurcaton, as well as patterns, in spatially extended

domains [4, 38]. For µ > 0 constant in time, this equation supports periodic wavetrains as well as fronts

which connect A = 0 ahead of the front interface to a non-constant, locally periodic “plane-wave” state

A = rei(kx−ωt); see Figure 4.1 for a depiction of a pattern-forming front in (1.4).

We remark here that we use a parameter heterogeneity which only multiplies the linear term as it simplifies

the frozen-coefficient nonlinear dispersion relation which relates the local amplitude r, wavenumber k,

and temporal frequency ω of the above plane waves. Further, this nonlinearity has direct connections

to other works which investigate dynamic slow passage through a Hopf bifurcation; see references on

delayed Hopf bifurcations above. We do note that similar results would hold for a nonlinearity of the form

µ(t)(A− (1 + iγ)A|A|2).

In both equations, we use a Green’s function analysis of the linearization about the trivial base state to

describe the front position, local invasion speed, and leading edge profile of the invasion front. In the case

of the CGL equation, (1.4), we then extend this analysis to predict the selected temporal frequency and

hence local spatial wavenumber at the front interface. We then employ this prediction as a time-dynamic

inhomogeneous Dirichlet boundary condition for a Burgers-type modulational analysis which predicts the

local wavenumber of the pattern left behind in the wake of the front.

This work is organized as follows: Section 2 describes the observed phenomena and derives our formal

predictions for front behavior in the FKPP equation (1.3) while Section 3 studies delayed bifurcation and
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invasion when µ0 < 0. For the pattern-forming CGL equation (1.4), Section 4.1 describes phenomena and

gives formal predictions for both front position, spatial decay, and leading-edge wavenumber. Section 4.2

then derives and compares a prediction for the bulk wavenumber while Section 4.3 characterizes spatially-

dependent bifurcation delay. In Section 5, we then return to the FKPP equation and state and prove our

rigorous spreading result, Theorem 1. Finally, Section 6 briefly gives preliminary results on and discusses

the extension of our approach to other pattern forming systems such as the Swift-Hohenberg and Cahn-

Hilliard equations as well slow transitions between pushed and pulled invasion in a time-dynamic Nagumo

equation. We also note that source codes used to produce the computational results of this work can be

found at the GitHub repository https://github.com/ryan-goh/fronts-and-patterns-temporal-ramp.

2 Phenomena and formal predictions - asymptotically constant fronts

In order to introduce our formal approach, we first consider the FKPP equation (1.3) above and derive a

leading-order prediction for the front interface location as time evolves. We remark that similar results,

albeit with slightly different derivations or in different settings, can be found in [49, 39]. To predict the

leading order front position, it suffices to consider the linearized equation

vt = vxx + µ(t)v. (2.1)

Introducing an integrating factor v = w exp
[∫ t

0 µ(s)ds
]
gives that w solves a heat equation, and hence v

has the solution form

v(x, t) =
exp

[∫ t
0 µ(s)ds

]
√
4πt

∫
R
e−

(x−y)2

4t v(y, 0)dy.

Similar to [49], we take a delta function initial condition v(x, 0) = δ0(x) to find

v(x, t) =
exp

[∫ t
0 µ(s)ds

]
√
4πt

e−
x2

4t .

We track the right-ward spread of this initial condition by fixing a threshold value uth ∈ (0, 1/2) and

defining the front interface location to be xfr(t) = infx∈R+{u(x, t) < uth}. Setting v(x, t) = uth, solving for

x, and keeping only the leading-order term in t≫ 1, we obtain,

xfr(t) ≈ σ(t) :=

(
4t

∫ t

0
µ(s)ds

)1/2

. (2.2)

If µ0 = 0 we have σ(t) =
√
2ϵt3 =

√
2
ϵ µ(t)

3/2 and, by differentiating, the instantaneous front speed is

x′fr(t) ≈ c(t) := σ′(t) =
3

2

√
2ϵt =

3

2

√
2µ(t). (2.3)

We remark that a frozen-coefficient analysis, where one freezes t and derives an instantaneous linearly

selected pulled invasion speed cfrz(t) := 2
√
µ(t) and then defines xf,frz(t) =

∫ t
0 cfrz(s)ds, does not accurately

capture the front position.

Figure 2.1 (left) depicts the measured front location in direct numerical simulation plotted against the

above leading-order prediction σ(t), as well as the frozen-coefficient prediction xf,frz(t). We find good

agreement only with the former prediction and that the naive frozen-coefficient prediction underestimates

the front position.
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Figure 2.1: Comparison of numerical simulations with predictions. The numerics were performed using 4th-order centered

finite-differences in space, and 2nd order balanced Strang splitting [47] in time with dx = 0.005 and dt = 0.0025. Left: A

comparison of the numerically measured front position (blue) to both the frozen coefficients prediction (yellow) and the linear

prediction (orange). (Center): A comparison of the measured steepness ux/u (blue) to the predicted steepness ν(t) defined in

the text (orange). (Right): Plot of front profile u(x, t) in (u, ux) phase plane, for several values of t (given in plot), overlayed

with the unique traveling wave trajectory of (2.5) for the same values of t in dashed black.

Following [49], we can then predict the leading-order spatial asymptotics of the front by transforming into

a co-moving frame z = x− σ(t), obtaining

v(z, t) =
1√
4πt

exp

[
−z

2

4t
− σ(t)

2t
z

]
(2.4)

so that the linear solution, and it turns out the nonlinear solution, has leading order spatial tail u(z, t) ≈
eν(t)z with

ν(t) = −σ(t)/(2t) = −
√
ϵt

2
= −

√
µ(t)/2,

indicating that the front steepens as time increases. In this reference, ν is termed the “natural asymptotic

steepness”.

This accurately predicts the steepness of the front found in numerical simulation. Here we measure the

time-dependent steepness by computing ux(x, t)/u(x, t) for x values just ahead of the front interface. The

two are compared in Figure 2.1(center), where we observe that, after an initial transient as the front

establishes itself, the two are in good agreement. We also remark that the asymptotic front speed c(t) and

front decay rate ν(t) will be crucial in our rigorous analysis of the nonlinear equation in Section 5. We

also note that the invasion front exhibits weaker spatial decay than that predicted by the frozen-coefficient

analysis since νfrz = −cfrz/2 = −√
µ ≤ −

√
µ/2 = ν < 0. From point of view of “envelope velocities” [26],

this is consistent with the accelerated invasion we observe. When the compact initial data initially spreads,

the small µ(t) prepares a weakly decaying tail, which as µ(t) increases, causes a instantaneous speed c(t)

which is faster than the frozen-coefficient speed cfrz.

We observe that the nonlinear front profile is well-approximated by the frozen-coefficient traveling wave

obtained for each t > 0 by fixing µ = µ(t), c = 3
2

√
2µ and solving the asymptotic boundary value problem

0 = u′′(z) + cu′(z) + µf(u(z)), lim
z→−∞

u(z) = 1, lim
z→+∞

u(z) = 0. (2.5)

A comparison of this frozen coefficient traveling wave with numerical simulation is given in Figure 2.1(right).

This solution is unique up to translations in z and, since the selected speed c is greater than the critical

speed cfrz = 2
√
µ, the spatial profile u(z) has strong exponential decay u(z) ∼ eνz, z ≫ 1 with ν as defined

above.
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We also remark that this comparison of the front profile in the u, ux plane indicates that the recently

developed “shape defect function” analysis [2, 3] might be of use in characterizing the front; we do not

pursue this avenue in this work. We note that [49] performs a similar analysis albeit for a constant coefficient

Ginzburg-Landau equation At = Axx + A− A|A|2, A ∈ C posed in a growing domain x ∈ [0, L(t)] which,

after a time-dependent spatial scaling, yields a equation with time dependent diffusion coefficient.

3 Higher-order position corrections, space-time memory curves, and

delayed invasion

We also explore spatio-temporal delay of invasion by setting µ0 < 0 and 0 < ϵ≪ 1 so that the trivial state

is initially stable and localized perturbations first decay before beginning to grow after µ(t) passes through

0 at t0 = −µ0/ϵ. Without spatial coupling, due to the absence of a symmetry breaking inhomogeneous

forcing term, one would expect a canard-induced symmetric bifurcation delay, where the solution becomes

full amplitude only when µ reaches roughly −µ0 (at t0 = −2µ0/ϵ) [36, 35]. In the PDE, while still having no

symmetry-breaking forcing terms, the diffusive coupling induces a spatially dependent delay of bifurcation

to the large amplitude state, and hence a delay of spatial invasion in the case of a strongly localized initial

condition. This spatio-temporal delay of spreading can be measured using the linearized analysis above to

obtain a curve in the x, t plane which demarcates the pointwise transition to the large amplitude state. In

the context of delayed bifurcation, this curve is known as the space-time memory curve. This curve gives

the precise front position of the linear dynamics, and hence includes the higher-order linear corrections

to the leading-order prediction in (2.2). It was established in the works [31, 21] and coined in the recent

work [22]. While these works considered spatio-temporal delayed Hopf bifurcation in a CGL equation,

such analysis also applies to the FKPP equation (1.3) considered above where the corresponding ODE

bifurcation would be a delayed transcritical bifurcation; see also [30]. In both these situations, we remark

that symmetry-breaking forcing terms can destroy the symmetric bifurcation delay mentioned above. In

FKPP, with say a constant forcing term µf(u) + I, we expect the dynamic bifurcation to follow that of

the uncoupled ODE for µ ∼ 0 [30]. In CGL, a forcing term µA − (1 + γ)A|A|2 + I causes an altogether

different spatially-dependent bifurcation delay moderated by the associated linear inhomogeneous solution,

with the space-time buffer curve controlling delayed bifurcation [31, 21]. We remark that it would also be

of interest to consider how bifurcation delay is altered by symmetry-breaking nonlinear terms, such as a

Burgers-type term uxu for FKPP or a term of the form −|Ax|2 in CGL.

Following [21], we compute the spacetime memory curves for the FKPP equation with Gaussian initial data

u(x, 0) = exp(−x2), an example initial condition which allows explicit computation. For general initial

conditions the curve can be computed by solving an implicit equation or via numerical approximation.

Inserting this specific initial condition into the solution formula for the linearized equation (2.1) we obtain,

v(x, t) =
1√

4t+ 1
exp

[
− x2

4t+ 1
+
ϵt2

2
+ µ0t

]
.

Once again setting v(x, t) = vth and solving v(x, t) = vth, we obtain

xmc(t) = ±

√
(4t+ 1)

(
ϵt2

2
+ µ0t− log(vth)−

1

2
log(4t+ 1)

)
. (3.1)

Figures 3.1 left, 3.2 left, and 3.3 left depict a spacetime diagram of the solution u with xmc overlaid in red

for ϵ = 5 × 10−3, 1 × 10−3, and 5 × 10−4. We find good agreement between the linearly predicted space-

time memory curve and the nonlinear solution. We again reiterate that the leading-order front position
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(2.2) can be obtained from (3.1) by extracting the leading-order term for t ≫ 1. In the right plots of

Figure 3.1: ϵ = 5 × 10−3, uth = 0.5, µ0 = −0.1. Left: A numerical simulation of the front, overlaid by the memory curve

(red). Center: A closer look around the time at which the front starts spreading. Right: The error between the numerical

measurement xf and the prediction xmc given by the memory curve.

Figure 3.2: ϵ = 1× 10−3, uth = 0.5, µ0 = −0.1. Same plots as in Fig. 3.1.

Figure 3.3: ϵ = 5× 10−4, uth = 0.5, µ0 = −0.1. Same plots as in Fig. 3.1

Figures 3.1, 3.2, and 3.3 we show the error between the numerically measured front position xf and the

prediction given by xmc. We note that in all cases this difference is negative and that the measured

position is less than the predicted position in magnitude. This implies for a fixed x location that the

nonlinear solution becomes large amplitude after the linear solution, indicating a further temporal delay

caused by the nonlinear dynamics. We observe this delay is ϵ-dependent for µ just after the solution first

passes through the threshold near x = 0, with an increasing delay as ϵ becomes small. Contrastingly, as

µ increases further, we find the delay converges to the same limit, roughly xf − xmc ≈ −3.2, for each ϵ.

7



To our knowledge this effect is not fully understood but we hypothesize that the convergence to a uniform

delay for large µ is caused by the steepening interface of the now fully established nonlinear front.

Focusing on the solution at x = 0, we note that spatial diffusive coupling induces a delay in large-amplitude

growth compared with the homogeneous symmetric exit time computed from the homogeneous linear ODE.

The center plots of Figures 3.1, 3.2, and 3.3 all have their range in t starting from the symmetric exit time,

i.e., the left boundary of the zoomed-in image is t0 = −2µ0/ϵ. It is clear from these that the symmetric

exit time is not representative of either the spacetime memory curve or the numerically measured solution.

4 Phenomena and formal predictions - pattern-forming fronts

We now consider invasion in the CGL equation (1.4) with time-dependent linear parameter µ. Using

localized initial data once again, we observe the same accelerating front interface as µ increases, but

now the local phase at the leading-edge oscillates with increasing frequency as time moves forward. This

oscillatory tail, via the nonlinear dispersion relation for periodic plane waves, establishes a local spatial

wavenumber just behind the interface. This oscillatory state then becomes large-amplitude and then mixes

with the bulk. In sum, the accelerating front leaves behind a large-amplitude, locally periodic state with

slowly-varying amplitude and wavenumber; see Figure 4.1.

Figure 4.1: Top: A pattern-forming front produced by the complex Ginzburg-Landau equation with an increasing, slowly-

varying parameter. Here t = 1000, and α = 1, γ = 0.3, and ϵ = 0.001, which are the parameters used throughout this section.

We used spatial and temporal discretizations of dx = 0.1, dt = 0.0025 and the same numerical algorithm as used for FKPP.

Bottom left: Spacetime-diagram of RA; Bottom Right: Space-time diagram of |A|.
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4.1 Leading-edge front location and wavenumber prediction

We once again consider the linearized Bt = (1 + iα)Bxx + µ(t)B, evolving from delta function initial

condition. We obtain a leading order prediction for the front location by solving the threshold equation

for the amplitude |B|. In more detail, the linear solution for delta function initial condition is given by

B(x, t) =
1√

4π(1 + iα)t
exp

[∫ t

0
µ(s)ds− x2

4(1 + iα)t

]
.

Once again assuming µ0 = 0 and solving |B(x, t)| = uth for x in terms of t at leading order gives the

interface prediction

σ(t) =
√

2ϵ(1 + α2)t3. (4.1)

We then determine the local temporal oscillation frequency at the interface by evaluating the imaginary

part of the solution at x = σ(t) and computing the local phase

ϕϵ(t) := Im logB(σ, t) =
ασ(t)2

4(1 + α2)t

=
αϵt2

2
. (4.2)

The local frequency at the front interface is then

ωϵ(t) := ϕ′ϵ(t) = αϵt. (4.3)

The local spatial wavenumber can then be obtained using the frozen coefficient nonlinear dispersion relation

posed in a co-moving frame z = x − ct, with frozen c = c(t) := σ′(t). That is, fixing µ, c > 0 in the full

nonlinear equation (1.4), and inserting the wave-train ansatz A = rei(k(x−ct)+ωt), one obtains

ω = (γ − α)k2 + ck − γµ, (4.4)

which has the solutions

k =
[
−c±

√
c2 + 4(γ − α)(ω + γµ)

]
/(2(γ − α)), α ̸= γ. (4.5)

Then, for each t > 0, we set ω = ωϵ(t), c = c(t) = σ′(t), and µ = µ(t), and assume γ − α ̸= 0 in this

formula to obtain the local wavenumber prediction

kϵ(t) =

√
µ(t)

2
√
2(γ − α)

(√
9 + α2 + 8γ2 − 3

√
1 + α2

)
, (4.6)

where we choose signs of the square root in (4.5) which has µ − k2 > 0 and thus the local amplitude,√
µ− k2, of the periodic wave is real and positive for µ > 0. For µ > 0 small and the dispersion parameters

chosen in Fig. 4.1, this is the positive branch of (4.5).

Figure 4.2 depicts a comparison of the leading-order prediction, kϵ, with the numerical wavenumber mea-

sured just behind the front interface. Here, the wavenumber is computed using kmeas = ImAx/A for an x

value just behind the front interface. Note that it takes some time for the front and patterned state to fully

establish itself, and we find the measured wavenumber converges close to the prediction by time t ≈ 200.

The spatial decay profile of the front can also be obtained from the linear solution B(x, t) as done for

FKPP above. Namely, one transforms into a co-moving frame z = x− σ(t), and expands the argument of

9



Figure 4.2: Left: Plot of wavenumber measurement kmeas = ImAx/A (solid orange) measured just behind the front interface

x = σ(t) compared with prediction kϵ(t). Center: Comparison of the decay rate measurement Re νmeas = ReAx/A (solid

orange), measured just ahead of the front interface, against the prediction ν given in (4.7); Right: Plot of the absolute error

|νmeas − ν| between measurement and prediction.

the exponential in B(z + σ(t)). The factor of the argument of the exponential which is linear in z gives

the exponential decay profile eν(t)z with

ν(t) = −
√
2ϵ(1 + α2)t

2(1 + iα)
. (4.7)

Figure 4.2 (center and right) shows that, after an initial transient, the spatial decay envelope is accurately

predicted by ν(t). The decay rate is numerically measured by evaluating Ax/A just ahead of the front

interface. The center plot depicts the real part of the measured and predicted decay rates while the right

plot depicts the absolute difference between them.

4.2 Bulk wavenumber modulation equation

To derive a prediction for wavenumber behaviors in the bulk, we use the modulational approach of [27]

which derives an inviscid Burger’s equation to predict the leading-order approximate behavior of the slowly-

varying amplitude and phase modulations of a plane wave solution. This approach uses a uniform scaling

in space and time (X,T ) = (δx, δt) with 0 < δ ≪ 1 and gives validity on the time scale t ∼ 1/δ for

finite amplitude wavenumber modulations. We remark that a parabolic scaling (X,T ) = (δx, δ2t) would

give a viscous Burger’s modulation equation and larger interval of validity in time, t ∼ 1/δ2 for small

wavenumber modulations. Since the inviscid modulational analysis yields accurate predictions and is

explicitly sovlable, we do not pursue the latter here; see [18] for more discussion on both.

We once again consider frozen coefficient plane wave solutions A(z, t) = r exp(i(kz+ωt)) in the co-moving

frame z = x − ct where c and µ are frozen so that ω and k satisfy (4.4) and r =
√
µ− k2. Taking into

account that µ and c are time dependent, we then define

ω(k, t) = (γ − α)k2 + c(t)k − γµ(t), r(k, t) =
√
µ(t)− k2. (4.8)

Since solutions initially begin with zero wavenumber, we modulate the k = 0 mode with the ansatz

A(z, t) = (r(0, t) + r̃(z, t)) exp(i(ω(0, t) + ϕ(z, t))). (4.9)

Inserting this into the complex Ginzburg-Landau equation gives a system of two coupled PDEs for r̃

and ϕ. We define the local wavenumber as ψ = ϕz, and define the slow variables (Z, T ) = (δz, δt), and
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(W, q)(Z, T ) = (r̃, ψ)(z, t), for δ > 0 small enough. Removing common factors of δ and then looking at

only leading-order terms in δ gives an algebraic equation which can be solved for W . Substituting this

into the remaining equation gives the inviscid Burger’s equation for q. We represent the front phenomenon

in question by imposing a time-dependent Dirichlet boundary condition fixing the wavenumber to be the

leading-edge prediction kϵ given in (4.6) above. In sum, we obtain the following modulation equation for

the wavenumber q(Z, T ) (see Chapter 6 of [18]), posed on the left half-plane with time-varying boundary

condition on the right boundary, and zero initial data q(Z, 0) = 0:

qT − ∂Zω(q, T/δ) = 0, Z < 0

q = kϵ(T/δ), Z = 0. (4.10)

Note that ω, defined in (4.8), is a function of q and t and ∂Zω(q, T/δ) = ωq(q, T/δ)qZ . As (4.10) is a

first-order nonlinear equation, it can be solved explicitly using the method of characteristics. Non-zero

characteristics emanate from the right boundary at Z = 0. This causes characteristic lines of varying slope

and hence a slowly-mixing wavenumber profile in the bulk.

In more detail, (4.10) gives the following system of characteristic equations

dq

ds
= 0 (4.11)

dZ

ds
= −ωq(q, T/δ) (4.12)

dT

ds
= 1, (4.13)

which can be explicitly solved

q(s) = q0 = kϵ(T0/δ), (4.14)

T (s) = s+ T0, (4.15)

Z(T ) = −2(γ − α)Cα,γ,ϵ

√
T0/δ(T − T0)−

√
2ϵ(1 + α2)T 3/δ +

√
2ϵ(1 + α2)T 3

0 /δ, (4.16)

where

Cα,γ,ϵ =
√
ϵ
(√

9 + α2 + 8γ2 − 3
√
1 + α2

)
/
(
2
√
2(γ − α)

)
. (4.17)

From this one can solve for T0 = T (0) in terms of (Z, T ), and insert into (4.14) to obtain an explicit

formula for the wavenumber in terms of the slow variables, after which one can translate back to the

original variables (x, t) for comparison with the measured wavenumber.

First, we note that since z = x − σ(t) with σ(t) =
√
2ϵ(1 + α2)t3, we can write Z = δz = δx − δσ(t) =

X − δσ(T/δ) in (4.16) to, after some algebraic manipulation, obtain the equation

0 = h(T0;T,X) :=
√
T0

3
− 2(γ − α)Cα,γ,ϵT

2(γ − α)Cα,γ,ϵ +
√

2(1 + α2)ϵ

√
T0 −

√
δX

2(γ − α)Cα,γ,ϵ +
√
2(1 + α2)ϵ

. (4.18)

Defining coefficients b0(X,T ) and b1(X,T ) to be such that h(T0;T,X) = T
3/2
0 + b1T

1/2
0 + b0, a cubic

polynomial in the variable
√
T0, we obtain only one real root with an explicit formula. Squaring this

formula yields

T0(X,T ) =

(
(2/3)1/3b1

Φ
− Φ

21/332/3

)2

, for Φ(X,T ) =

(
−9b0 +

√
81b20 + 4b31

)1/3

.
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We insert this formula for T0 into the wavenumber characteristic solution q(T ) = q0 = kϵ(T0/δ), for kϵ(t)

as given in equation (4.6), obtaining the following formula for the wavenumber in terms of X and T

q(X,T ) = kϵ(T0(X,T )/δ). (4.19)

Unwinding the change of variables (X,T ) = δ(x, t), and defining t0(x, t) := T0(X,T )/δ we can then obtain

ψ(x, t) = q(X,T ) = kϵ(t0(x, t)). (4.20)

See also Sec. 1 - 3 of [27] for a similar derivation and discussion of the relation between the scaled and

unscaled phase and wavenumbers. As noted there, we remark that, due to the uniform scaling (X,T ) =

δ(x, t) and the local wavenumber q(X,T ) = ψ(x, t), one finds that the solution ψ(x, t) = kϵ(t0(x, t)) can be

obtained at leading order directly by solving the equivalent Burger’s equation in the fast co-moving frame

variables (z, t)

ψt = ∂zω(ψ, t), z < 0, t > 0; ψ(0, t) = kϵ(t), ψ(z, 0) = 0 (4.21)

using the method of characteristics, and then translating back to stationary coordinates (x, t).

After setting the wavenumber to be zero ahead of the front, we obtain a prediction for the wavenumber

dynamics at both the front interface as well as in the wake. Figure 4.3 gives space-time diagrams of the

measured wavenumber, kmeas = Im(Ax/A) (left) and predicted wavenumber, kϵ(t0(x, t)), (center), as well

as a plot with both laid on top of each other plotted against x for several positive times (right). We find

good agreement between the prediction and the measured wavenumber.

Figure 4.3: Comparison of the measured wavenumber kmeas(x, t) = Im(Ax(x, t)/A(x, t)) and the prediction kϵ(t0(x, t)),

obtained via an inviscid Burger’s modulational analysis; Left and center plots give spacetime diagrams (with color denoting

the wavenumber) of this measurement and prediction respectively; Right plot overlays measurement (solid) and prediction

(dashed), plotted against x for various times t > 0 (labeled in the figure, and varying in color); wavenumber set to zero ahead

of the front interface xf .

4.3 Delayed Hopf bifurcation in CGL

As to be expected from [31, 21], the linearized space-time memory curve approach for FKPP in Section

3 above also gives accurate predictions for the slowly varying CGL equation (1.4) with µ = ϵt + µ0 with

µ0 < 0. Following the aforementioned references, we change variables to consider the µ variable as time,

and consider

ϵAµ = (1 + iα)Axx + µA− (1 + iγ)A|A|2. (4.22)
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Linearizing about the base state A = 0, we then obtain the following linear equation

ϵBµ = (1 + iα)Bxx + µB, (4.23)

which can once again be solved explicitly. For initial condition B(x, 0) = e−x2
, one obtains the solution

B(x, t) = (4π(1 + iα)(µ− µ0) + ϵ)−1/2 exp

[
1

2ϵ

(
µ2 − µ20

)
− ϵx2

4(1 + iα)(µ− µ0) + ϵ

]
. (4.24)

With this solution, we set |B(x, µ)| = Bth and take the logarithm of both sides to obtain an implicit

equation for the space-time memory curve,

log(Bth) =
1

2
log ϵ− 1

4
log
(
(ϵ+ 4(µmc(x)− µ0))

2 + (4α(µmc(x)− µ0))
2
)

− ϵx2
ϵ+ 4t

(ϵ+ 4(µmc(x)− µ0))2 + (4α(µmc(x)− µ0))2
. (4.25)

This implicit equation is solved numerically and plotted on top of the numerical solution of (4.22) in Figure

4.4. We find good agreement between our linear prediction µmc(x) and the spatially dependent onset of

Figure 4.4: Depiction of delayed Hopf bifurcation and invasion in (4.22) with ϵ = 0.001, µ0 = −0.1, α = 1, γ = 0.3, vth = 0.2

and A(x, 0) = e−x2

. Domain length x ∈ [−1000, 1000] with dx = 0.1 and dt = 0.0025. The red curve denotes the linear

predicted space-time memory curve µh(x). Left plot depicts a space-time diagram of ReA(x, µ) and the right plot gives the

same for the amplitude |A(x, µ)|.

large amplitude oscillations.

5 Rigorous spreading in FKPP fronts

In this section, we return to the FKPP equation (1.3) with time-dependent, increasing, unbounded, and

slowly-varying parameter µ = ϵt + µ0, and standard nonlinearity f(u) = u − u2. We give a rigorous

characterization of the spreading process in the Cauchy problem with step function initial data u(x, 0) =

h0(−x) with h0(x) the standard Heaviside function. Note, since µ(t) < 0 for t ≪ −1, there do not exist

generalized transition waves as defined in [11] et. al. We show that for t sufficiently large, the stable state

u ≡ 1 invades u ≡ 0 with the linearly predicted front position σ derived in (2.2) above. Our main result is

as follows:

13



Theorem 1. Let µ0 = 0 and ϵ > 0, and u(x, t) be the solution of (1.3) with u(x, 0) = h0(−x). Then, for
all η > 0

lim
t→+∞

sup
x≥σ(t)+ηt

u(x, t) = 0, (5.1)

lim
t→+∞

inf
x≤σ(t)−ηt

u(x, t) = 1. (5.2)

The proof of this theorem is given in the rest of this section. We first prove (5.1) by creating a supersolution

using a solution of the linearized equation with the same Heaviside initial data. We then use a difference

of exponential profiles with time dependent decay rates to create a subsolution which establishes (5.2).

This result is by no means sharp, and is mostly meant to show how comparison principle methods can be

applied in the unbounded parameter case, using exponentials with time dependent spatial decay rate. We

note that similar spreading behavior will occur for small, bounded, and compactly supported initial data.

Also, we expect results of this form will extend to more general monostable nonlinearities, e.g. f(0) =

f(1) = 0, f ′(0) > 0, f ′(1) < 0, f(u) ≤ f ′(0)u for u ∈ (0, 1). Further, we expect similar spreading behaviors

to occur in other systems with monostable equilibrium configuration and an unbounded parameter which

controls stability.

Remark 5.1. The results of Theorem 1 also hold for µ0 > 0. The linearly predicted front position in this

case is σlin(t) =
(
4t
∫ t
0 µ(s)ds

)1/2
=

√
2ϵt3(1 + 2µ0

ϵt )
1/2. One would still set the front position to be the

leading order term σ(t) = (2ϵt3)1/2 and proceed as in the proof below. Any corrections due to the lower

order terms enter in at O(t−1/2) and hence are contained within the lines x = σ(t) ± ηt for any η > 0 as

t→ +∞.

5.1 Supersolution

It will be helpful to define various quantities characterizing spreading in terms of µ such as the time-

dependent speed and spatial decay rate. We have c(t) = 3
√
µ/2, ν(t) = −

√
µ/2, so that ν2+ cν+µ = 0.

Also, we define the nonlinear and linearized operators

N [u] := ut − uxx − µ(t)f(u), (5.3)

Lv = vt − vxx − µ(t)v. (5.4)

We then obtain a supersolution in the following lemma.

Lemma 5.1. Let ϕ̄(x, t) be the solution of 0 = Lv, defined in (5.4), with initial condition ϕ̄(x, 0) = u(x, 0),

then ϕ̄ is a supersolution of (1.3), that is N [ϕ̄] ≥ 0, and it satisfies

lim
t→+∞

sup
x≥σ(t)+ηt

ϕ̄(x, t) = 0, (5.5)

for any η > 0.

Proof. We first observe that f(u) ≤ f ′(0)u for u ≥ 0 and henceN [ϕ̄] ≥ Lϕ̄ = 0, and thus ϕ̄ is a supersolution

of the full nonlinear equation for all t ≥ 0. The linearized equation can be solved explicitly for Heaviside

initial data obtaining

ϕ̄(x, t) =
exp(ϵt2/2)

2

[
1− erf

(
x+ σ(t)

2
√
t

)]
,

which becomes positive for all t > 0. Analyzing the level sets of this function yields the result.
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Using this generalized supersolution, one can also obtain an upper-bound on the asymptotic tail of the

front as x→ +∞ by using the expansion of the (complementary) error function to find

ū(x, t) ∼ eν(t)(x−σ(t)), for x→ +∞, t > 0,

where we recall that ν satisfies ν2 + cν + µ = 0. Since this supersolution is unbounded as x → −∞, and

since u = 1 serves as a global bound for all positive solutions with data less than or equal to one, we

may form the generalized supersolution ū(x, t) = minx
{
ϕ̄(x, t), 1

}
which retains the same spreading and

asymptotic spatial decay properties as ϕ̄.

5.2 Subsolution

We construct two subsolutions. The first will allow us to obtain tail estimates on the nonlinear solution

u. We then construct a refined subsolution with a µ-constant maximum value (in z for each t). Using

the tail estimates of the first subsolution, we then can scale and shift the refined subsolution to bound

the nonlinear solution from below and obtain a lower bound on the spreading properties of the front for

sufficiently large times.

We transform the nonlinear equation into the co-moving frame z = x− σ(t), and define N [u] = Lu+ µu2,

with Lv = vt − vzz − c(t)vz − µv. For the first subsolution, we let v(z, t) = ϕ̄(z + σ(t), t) be the solution

of the linear equation 0 = Lv defined in Section 5.1 above. This can be made a nonlinear subsolution

for z large enough by defining w(z, t) = A(t)v(z, t), and inserting into the nonlinear equation to obtain

N [w] = v
(
A′ + µA2v

)
. Next we have there exists a constant C > 0 such that v(z, t) ≤ Ceνz. Then, for

z ≥ zs(t) := −
√
2µ−1/2 log(µ−α) with α > 0

v(z, t) ≤ Cµ−α. (5.6)

Choosing A to solve A′ = −Cµ1−αA2, this estimate gives

N [w] ≤ v
(
A′ + Cµ1−αA2

)
= 0, z ≥ zs(t). (5.7)

Then for α > 2 we can choose A(0) > 0 so that A(t) is bounded from above and below by positive constants

for all t ≥ 0. We also remark that zs(t) is bounded for µ large.

We next construct a subsolution which gives a lower bound on the spreading properties of the front for

sufficiently large times and which can be modified and shifted to bound the nonlinear solution from below

for all z. We construct this subsolution using the somewhat standard approach of taking a difference of

two exponential functions with an appropriate time-dependent shift. We choose parameters in order to

keep the subsolution bounded with maximum bounded away from zero for all t > 0, and moving with

asymptotic speed c(t); see [41, Prop. 3.4]. As many quantities will be dependent on t, we suppress this in

our notation below to simplify formulas whenever convenient. We define φ(z, t) = ψ(z, t)− θ(z, t) with

ψ(z, t) = eνz, θ(z, t) = eκ(z−δ2),

where κ = (1+C0)ν for some constant 0 < C0 < 1 fixed and independent of t and ϵ, and the shift δ2 = δ2(t)

is defined as

δ2 := − C2

µ1/2
, (5.8)

for some constant 0 < C2 < C0 to be chosen later. Note that φ has the same leading order decay rate as

the supersolution for z ≫ 1. The µ−1/2 dependent shift δ2 is chosen to balance the µ1/2 behavior of ν and
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keep the unique maximum value of φ bounded in µ. The function φ satisfies φ(z, t) ≥ 0 on the domain

z ∈ [z0(t),∞) with

z0(t) :=
κδ2
C0ν

= −(1 + C0)C2

C0µ1/2
.

Further, it has a single critical point

z∗ =
κδ2 + log(κ/ν)

κ− ν
,

with µ-independent maximum value

φ(z∗, t) = (κ/ν − 1) exp

[
κ

ν − κ
(−νδ2 + log(κ/ν))

]
=

C0

(1 + C0)1+1/C0
exp

[
C2(1 + C0)√

2C0

]
, (5.9)

and is monotonically decreasing for z ≥ z∗. Inserting φ into the PDE, and observing that (∂2z+c∂z+µ)ψ = 0

by the definition of ν, we obtain

N [φ] = φt + p(κ)θ + µφ2

= zν ′ψ − (z − δ2)(1 + C0)ν
′θ + κδ′2θ + p(κ)θ + µφ2

=: I + II, (5.10)

where we define p(κ) := (κ2 + cκ+ µ) = −ν2C0(1− C0) in the first line, and set

I = zν ′ψ − (z − δ2)(1 + C0)ν
′θ + p(κ)θ/2, II = p(κ)θ/2 + µφ2 + κδ′2θ.

Here we decompose N [φ] into two groups I and II and separately bound both from above by 0. We have

split the p(κ)θ term to use its strict negativity for C0 ∈ (0, 1) in both groups of terms.

We begin by showing II ≤ 0. We first note that

κδ′2θ = −(1 + C0)C2

2
√
2µ

θ < 0, (5.11)

for all t > 0. Hence it is sufficient to show that p(κ)θ/2 + µφ2 ≤ 0 for suitably chosen C0 and C2

after possibly scaling φ by some constant independent of µ. We note straight-forward computation gives

φ(z∗) = C0θ(z∗). Also, for C2 <
√
2 log(1 + C0), we have that φ(z∗) ≤ C0 by (5.9). We also compute

φ(z∗) ≤ φ(z∗)/C0 = θ(z∗).

We then claim that φ(z, t)2 < C2
0θ(z, t) for all z ≥ z0. Momentarily assuming this claim, we then have that

p(κ)

2
θ + µφ2 = −µC0

4
(1− C0)θ + µφ2

≤ µ

(
−1

4
C0(1− C0) + C2

0

)
θ

= µ

(
−1

4
C0 +

5

4
C2
0

)
θ ≤ 0, (5.12)

choosing C0 sufficiently small - in particular C0 ∈ (0, 1/5). To prove this claim, we note the z decay

properties of ψ and θ imply that φ2 decays faster than θ for in z ≫ 1 and further that there exists a z2 > 0

bounded in µ such that

φ2 ≤ C2
0θ, z ≥ z2.
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Since φ(z∗) is independent of µ, and due to the quadratic dependence of the left-hand side, one can then

obtain the same inequality on the uniformly bounded domain (z0, z2) by rescaling φ to be sufficiently small.

All together, combining (5.11) and (5.12) we then have that II ≤ 0.

We now bound I. Define B(z, t) := ν ′ψ − ν ′(1 + C0)(z − δ2)θ. The general approach will be to first show

that B ≤ 0 for all z ≥ z1 for some z1 which is bounded uniformly in µ. Then, we find that B ≲ µ−1/2 on

the interval z ∈ [z0, z1]. This allows us to conclude, on the region where B(z) > 0, that B is dominated by
p(κ)θ
2 = −C1µ for µ sufficiently large.

Lemma 5.2. On the interval (z0,∞), B(z, t) has one zero, z1, satisfying 0 < z1 < C3µ
−1/2 with C3 =

C2

(
e

(1+C0)C2√
2 − 1

)−1

, B > 0 on (z0, z1), and B < 0 for z ∈ (z1,∞).

Proof. First, as ν ′ < 0, we set B = ν ′B̃ with B̃ = zψ − (1 + C0)(z − δ2)θ and prove the analogous results

for B̃. Next, we observe that our choice of δ2 gives, via a brief calculation, that B̃(z0) = 0, and B̃(z) < 0

for z ∈ (z0, δ2]. We study zeros on z > δ2 by rearranging B̃ = 0 as

(1 + C0)
−1 z

z − δ2
= θ(z)/ψ(z). (5.13)

We observe the left hand side of (5.13) has a vertical asymptote at z = δ2, goes through zero at z = 0,

and has a horizontal asymptote to (1+C0)
−1 as z → +∞. The right hand side, θ/ψ = e(1+C0)ν(z−δ2)−νz is

positive, monotonically decreasing, and hence bounded from above for z > δ2 by θ(δ2)/ψ(δ2) < 1. Further,

by the monotonicity and asymptotics of each function we see that there is one root, z1, of (5.13) in [0,∞).

The sign properties of B̃ follow. To bound z1, it also follows that the zero z1 lies to the left of the root,

z̃1, of the equation
z

z − δ2
= r, (5.14)

with r := (1+C0)
2 θ(0)/ψ(0) = 1+C0

2 e−(1+C0)C2/
√
2. The choice of C0 gives that, for all C2 > 0 sufficiently

small, 0 < r < 1. We then compute

z̃1 =
rδ2
r − 1

=
C2r

1− r
µ−1/2.

The constant C3 = C2r
1−r multiplying µ−1/2 in the last line, is independent of µ, and can be chosen to be

positive for some C2 > 0 small. This bounds the root z1 from above by C3µ
−1/2 and hence gives the result

of the lemma.

From this lemma we have that B ≤ 0 for all z ≥ z1, leaving a bounded domain [z0, z1] where B ≥ 0. On

this interval, direct computation then gives that |B(z)| ≤ ϵC4µ
−1/2 for some C4 > 0 independent of µ.

One can also estimate

min
z∈[z0,z1]

θ(z) > θ(z̃1) = exp

(
−(1 + C0)C2√

2(1− r)

)
> e−1, (5.15)

where we have used the fact that −s/(1− 1+C0
2 e−s) ≈ −2s/(1− C0) for s ≈ 0 and set s = (1+C0)C2√

2
. The

last inequality follows from this approximation and the fact that C0 ∈ (0, 1/5) by our previous assumption.
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This allows us to estimate

p(κ)

2
θ = −C1

2
µθ(z, t)

≤ −C1

2
µ min

z∈[z0,z1]
θ(z, t)

< −C1

2e
µ

≤ −B(z), (5.16)

for µ sufficiently large, in particular µ ≳ ϵ2/3 up to some constant dependent on C1 and C4. Here the

third line follows from (5.15) and the last inequality by the uniform bound on |B(z)| for µ sufficiently

large. Hence we may conclude B(z) + 1
2p(κ)θ ≤ 0 for all z ≥ z0 and hence that I ≤ 0. Combining this

with the bound on II we then obtain N [φ] ≤ 0 as desired. We then define the generalized subsolution

φ(z, t) = max{0, φ} so that the function is strictly non-negative.

5.3 Proof of Theorem 1

Before completing the proof, we briefly comment on the application of maximum and comparison principles

in our case. Say we have u(x, 0) ≤ v(x, 0) with N [u(x, t)] = 0, N [v(x, t)] ≥ 0, and we have apriori bounds

0 ≤ u, v ≤ 1 for t ≥ 0. To derive a comparison principle, we define w = v − u so that w(x, 0) ≥ 0 and

wt − (wxx + µw (1− (u+ v))) ≥ 0. We then define w̃ = exp
(∫ t

T0
µ(s)ds

)
w for some initial time T0 ≥ 0 so

that

w̃t − (w̃xx − µw̃(u+ v)) ≥ 0,

which has a linear coefficient −µ(u + v) on the w̃ term which is bounded from above due to the apriori

bounds on u and v and the fact that µ(t) is bounded from below. We can then apply standard maximum

principles to obtain that w̃(x, t) ≥ 0 and hence that u(x, t) ≤ v(x, t) for all x and t ≥ T0. A similar

argument can be used to obtain a comparison principle for subsolutions.

Since ū(x, 0) = u(x, 0), the above maximum principle gives that u(x, t) ≤ ū(x, t) for all t > 0. We then

readily conclude the upper bound on the spreading location (5.1) from the construction of the supersolution

ū(x, t) in Lemma 5.1.

To conclude the lower bound, we further alter the subsolution φ following the approach outlined by [25]. In

particular, we note that all solutions of (1.3) with non-negative initial data bounded above by 1, converge

to u ≡ 1 as t → +∞, locally uniformly in x. Letting γ := φ(z∗, t), the µ- and hence t-independent

maximum value of the subsolution φ defined in (5.9), there exists a time T0 such that u(0, t) ≥ γ, for all

t ≥ T0. Since the maximum principle readily gives that u(x, t) is monotonically decreasing in x for all

t > 0, we then have u(x, t) ≥ γ for all x ≤ 0 and t ≥ T0. We then modify the generalized subsolution,

φ
γ
(z, t) =

{
γ, z < z∗

φ(z, t), z ≥ z∗.

Next, since the preliminary subsolution w defined at the start of Section 5.2 implies that u has the the

same tail asymptotics as φ
γ
, in particular u(x, t) ≥ Ceν(x−σ(t)) for x ≥ σ(t) + zs(t), there exists a shift x1,

scaling constant β > 0, and time T1 ≥ T0 sufficiently large so that Lemma 5.2 applies and

u(x, T1) ≥ βφ
γ
(x− σ(T1) + x1, T1),
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for all x. Hence, as βφ
γ
is also a subsolution, the comparison principle gives

u(x, t) ≥ βφ
γ
(x− σ(t) + x1, t), for t ≥ T1.

Since z∗ decays to zero like µ−1/2 for t large, we have for any η > 0 that x = σ(t) + z∗(t) ≥ σ(t)− ηt for t

sufficiently large. This implies that φ
γ
(x− σ(t) + x1, t) ≡ γ along any ray {x = σ(t)− ηt} for t sufficiently

large. Pairing this with the locally uniform convergence of solutions u with 0 < u ≤ 1 to 1 as t→ +∞, we

obtain the lower bound (5.2), completing the proof of Theorem 1.

6 Other pattern-forming equations and discussion

We have studied front invasion into an unstable state in the presence of an increasing, slowly-varying

parameter in both the case where the front leaves behind a spatially homogeneous state as well as the

case where it leaves behind a locally periodic pattern. In both cases, a linearized analysis accurately

predicts the nonlinear front position and spatial decay asymptotics of the leading edge and shows that

fronts accelerate faster than the speed predicted by a frozen-coefficient analysis. We consider the former in

the prototypical FKPP equation to introduce our approach and also establish a rigorous spreading result

in the previously unstudied case (at least to our knowledge) of an unbounded parameter. We consider the

latter case of patterned-fronts in the CGL equation, once again characterizing the accelerating invasion,

but also using the leading-edge temporal oscillation frequency of the linearized equation to predict the local

spatial wavenumber established at the leading edge. This leading-edge prediction then provides a dynamic

Dirchlet boundary condition for an inviscid Burger’s equation which accurately predicts the slowly-varying

wavenumber dynamics in the wake of the front. In both cases, when the dynamic parameter has µ(0) < 0

so that the trivial state being invaded is initially stable, we employed the recently developed concept of a

spacetime memory curve to predict the spatially dependent delayed onset of instability and hence delayed

invasion.

The approaches for patterned fronts with a dynamic parameter developed here can, in principle, be applied

to other pattern forming systems, such as the Swift-Hohenberg equation, Cahn-Hilliard equation, or a

reaction-diffusion system, where pattern-forming invasion into an unstable homogeneous state has been

shown to exist for static parameters. We expect the introduction of a dynamic parameter would once

again lead to an accelerating invasion front as well as a slowly varying-wavenumber. Figures 6.1 and

6.2 respectively provide preliminary numerical simulations of the Swift-Hohenberg and the Cahn-Hilliard

equations with dynamic parameter µ(t) with µ0:

ut = −(1 + ∂2x)
2u+ µ(t)u− u3, (6.1)

ut = −∂2x
(
∂2xu+ µ(t)u− u3

)
. (6.2)

We observe accelerated invasion with non-constant front speed, and a spatially varying non-constant

wavenumber selected in the wake. Indeed, we find as the speed increases, the wavenumber selected at the

front interface also increases. For the Swift-Hohenberg equation (6.1), the amplitude and local wavenumber

of the patterned-front were measured using the iterative Hilbert transform approach; see [20] for the detail

of this computational technique. While wavenumber variations here are relatively small due to the strong

preference for wavenumbers close to 1 for µ close to zero, we indeed find that the invasion front leaves a

slowly-increasing wavenumber as it increases. A plot of the solution (blue) and its amplitude (orange) for

a fixed t is given in the upper frame of the top right plot in Figure 6.1, while the local wavenumber is given

in the bottom frame. Further a spacetime diagram of the wavenumber dependence for a range of times t
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Figure 6.1: Delayed bifurcation and patterned invasion into an unstable state in (6.1) with µ0 = −0.15 and ϵ = 0.01. The

equation used spectral discretization in space on the domain x ∈ [−80π, 80π] with N = 213 modes and 4th order Runge-Kutta

Exponential Time differencing [32] with dt = 0.001 and Gaussian initial data u(x, 0) = e−x2

. Upper left: Spacetime diagram

of solution; Upper right: depiction of the solution profile (top) u(x, t) (blue) along with its amplitude (orange) and local

wavenumber (bottom) at time t = 110.0; In the bottom row, spacetime diagrams of the amplitude and local wavenumber are

plotted. Wavenumber measured using the iterative Hilbert transform approach; see [20] for an example of this.

is given in the bottom right plot. In this last plot, we have thresholded the wavenumber profile, setting it

equal to zero whenever the amplitude of the front was less than 0.05. The bottom left plot of Figure 6.1

also depicts the amplitude of the front which, since µ0 < 0, undergoes spatio-temporal delayed onset and

invasion just as in the FKPP and CGL equations above.

We observe similar behaviors in the Cahn-Hilliard equation (6.2), where a Gaussian perturbation in the

center of the domain initially leads to the (delayed) formation of a large kink/anti-kink solution. A front

forms where further kinks and anti-kinks are laid down, with the distance between peaks narrowing as time

evolves and µ increases. We note that here the wavenumber was determined by measuring the distance

between consecutive zeros of the solution for each fixed t.

We expect that the linearized equation about u = 0 - which is vt = −(1 + ∂2x)
2v + µ(t)v in the case of

(6.1) - will give leading-order predictions for patterned-invasion in both equations. If an explicit solution

for v, as in the diffusive scalar case, is not attainable we expect that one could obtain a leading order

diffusive expansion about the critical mode eix via its pointwise Green’s function [26], from which front

position σ(t) and frequency ω(t) could be obtained as above. As we expect the oscillatory front interface
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Figure 6.2: Delayed bifurcation and patterned invasion into an unstable state in (6.2) with µ0 = −0.05 and ϵ = 0.01. The

same simulation approach, parameters, and initial condition as in Figure 6.1 were used. Left: Spacetime diagram of solution;

Right: depiction of the solution profile u(x, t) (top) and local wavenumber (bottom) at time t = 215; Wavenumber determined

by measuring distances between consecutive zeros of the solution, note variations occur as front tail gets close to zero.

to conserve nodes [50], the frequency and speed c(t) = σ′(t) at the leading-edge would then give the local

selected wavenumber k(t) = ω(t)/c(t). From the standpoint of delayed bifurcation, it would be interesting

to apply the recently developed geometric blow-up techniques of [28, 29], which obtain Ginzburg-Landau

modulational equations for the solution in various blow-up charts near (u, µ) = 0, in order to more precisely

characterize the spatio-temporal bifurcation delay; see also [10, 15]. More generally, it would be of interest

whether a time-dependent modulation equation could be derived which not only predicts amplitude and

front interface but also the selected wavenumber for a long but finite time interval. As a rigorous proof of

pattern selection by invasion into an unstable state for a even static parameter µ = µ0 > 0 is still open

for general systems (see [9, 6, 7] for related works), we expect rigorous existence and selection proofs to be

difficult.

It would also be of interest to consider dynamic parameters in systems with pushed fronts [50], where the

front interface spreads with speed faster than predicted by the linearized equation. One natural place to

begin this study would be the Nagumo-scalar reaction diffusion equation

ut = uxx + u(1− u)(µ(t) + u) (6.3)

where u = 1 invades u = 0. When µ is constant, it is known that invasion fronts are pushed for µ ∈ (0, 1/2)

and travel with the speed cp(µ) =
√
2(1/2+µ), invading with speed faster than predicted by the linearized

equation. For µ ≥ 1/2, the selected front is pulled, traveling with the linearly predicted pulled speed

clin(µ) = 2
√
µ; see [8] and references therein for a summary of these results. Figure 6.3 gives the results of

direct numerical simulation of (6.3) with linear ramp µ(t) which slowly ramps through the pushed regime

and then into the pulled regime for larger µ. See also Example 2 of [41] which gives an explicit formula for

the front in the case of µ(t) > 1.

Interestingly, and in contrast to the FKPP equation above, we observe that the front initially invades

with the frozen-coefficient speed cp(µ(t)) defined for the constant coefficient equation; see Figure 6.3 top

left. Integrating this frozen-coefficient speed, then gives an accurate prediction for the front position

xf,p :=
∫ t
0 cp(s)ds.; see Figure 6.3 top right. In this regime, we observe that the leading-edge of the front

exhibits the typical steep decay of pushed fronts, behaving like u(x, t) ∼ eνpx where νp is a root of the
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Figure 6.3: Direct numerical simulations of (6.3) with µ0 = 0 and ϵ = 0.001, using same numerical approach and parameters

as in Fig. 2.1. Top left: Space time diagram of solution; Top right: comparison of measured front position (blue) to dynamic

linear prediction xf,pred (dashed black) defined in (2.2), and frozen coefficient pushed prediction xf,p (dot-dashed yellow)

defined below. Bottom left: Comparison of the measured instantaneous front speed (blue) with the dynamic linear prediction

(dashed black) and frozen-coefficient pushed speed (yellow dot-dashed); Bottom right: comparison of the leading-edge decay

of the front (measured using ux/u) with the dynamic linear prediction ν(µ) and frozen-coefficient pushed prediction νp(µ).

linear dispersion relation ν2 + cp(µ)ν + µ. Interestingly, we find for µ ∈ [0, 1/2] the front selects the most

negative root νp = −cp/2−
√
c2p/4− µ while for µ above 1/2, roughly until 0.8 it selects the less negative

root −cp/2 +
√
c2p/4− µ. We expect this corresponds to the frozen-coefficient pushed-pulled transition at

µ = 1/2 where the traveling wave heteroclinic of 0 = uzz + cp(µ)uz + u(1 − u)(µ + u) converges into the

origin along the weak stable eigendirection instead of the strong stable one; see also Fig. 5 of [24].

As µ increases we observe a transition regime for µ approximately between 0.8 and 1 where the front speed

transitions to the dynamic linearly predicted speed c(µ) = 3
2

√
2µ derived in (2.3) - not the instantaneous

speed clin = 2
√
µ - and the front position moves with the corresponding linear prediction xf,pred = σ(t)

in (2.2). Further, as seen in Figure 6.3 bottom right, the leading-edge front decay rate transitions in this

regime between νp to the dynamic linear prediction ν(µ) = −
√
µ/2 derived in (2.4) above. We particularly

note that the dynamic transition, denoted as µ∗, from pushed to pulled invasion is delayed, happening at

µ values (roughly 0.8) larger than the constant-coefficient pushed-pulled transition µ = 1/2. It would be of

interest to determine the dependence of the delay µ∗ − 1/2 as ϵ → 0+. Further, we also note the possible

connection to the “semipushed” transition regime discussed in [14].
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In a pattern-forming system, one might consider subcritical versions of the complex-Ginzburg Landau

At = (1+iα)Axx+µ(t)A+(ρ+iγ)A|A|2−(1+iβ)A|A|5, Swift-Hohenberg ut = −(1+∂2x)
2u+µ(t)u+γu3−u5,

or Cahn-Hilliard equations ut = −
(
uxx + µ(t)u+ γu3 − βu5

)
xx
, with µ increasing from zero for suitably

chosen constants γ, β > 0. Here, we expect fronts to initially resemble the pushed-type fronts until µ passes

through a critical value µ∗ where constant-coefficient fronts become pulled.
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equations, Journal de Mathématiques Pures et Appliquées, 98 (2012), pp. 633–653.

[42] L. Rossi and L. Ryzhik, Transition waves for a class of space-time dependent monostable equations,

Communications in Mathematical Sciences, 12 (2014), pp. 879–900.

[43] W. Shen, Traveling waves in time dependent bistable equations, Differential and Integral Equations,

19 (2006), pp. 241–278.

[44] , Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable

equations, Journal of Dynamics and Differential Equations, 23 (2011), pp. 1–44.

[45] W. Shen and Z. Shen, Stability, uniqueness and recurrence of generalized traveling waves in time

heterogeneous media of ignition type, Transactions of the American Mathematical Society, 369 (2017),

pp. 2573–2613.

[46] K. Siteur, E. Siero, M. B. Eppinga, J. D. Rademacher, A. Doelman, and M. Rietkerk,

Beyond Turing: The response of patterned ecosystems to environmental change, Ecological Complexity,

20 (2014), pp. 81–96.

[47] R. L. Speth, W. H. Green, S. MacNamara, and G. Strang, Balanced splitting and rebalanced

splitting, SIAM Journal on Numerical Analysis, 51 (2013), pp. 3084–3105.

[48] N. Stoop and J. Dunkel, Defect formation dynamics in curved elastic surface crystals, Soft matter,

14 (2018), pp. 2329–2338.

25



[49] T. Tsubota, C. Liu, B. Foster, and E. Knobloch, Bifurcation delay and front propagation

in the real Ginzburg-Landau equation on a time-dependent domain, Physical Review E, 109 (2024),

p. 044210.

[50] W. Van Saarloos, Front propagation into unstable states, Physics reports, 386 (2003), pp. 29–222.

26


	Introduction
	Phenomena and formal predictions - asymptotically constant fronts
	Higher-order position corrections, space-time memory curves, and delayed invasion
	Phenomena and formal predictions - pattern-forming fronts
	Leading-edge front location and wavenumber prediction
	Bulk wavenumber modulation equation
	Delayed Hopf bifurcation in CGL

	Rigorous spreading in FKPP fronts
	Supersolution
	Subsolution
	Proof of Theorem 1

	Other pattern-forming equations and discussion

